在程序运行的过程中,所有的变量都是在内存中,比如,定义一个dict:

d = dict(name='Bob', age=20, score=88)

可以随时修改变量,比如把name改成'Bill',但是一旦程序结束,变量所占用的内存就被操作系统全部回收。如果没有把修改后的'Bill'存储到磁盘上,下次重新运行程序,变量又被初始化为'Bob'

我们把变量从内存中变成可存储或传输的过程称之为序列化,在Python中叫pickling,在其他语言中也被称之为serialization,marshalling,flattening等等,都是一个意思。

序列化之后,就可以把序列化后的内容写入磁盘,或者通过网络传输到别的机器上。

反过来,把变量内容从序列化的对象重新读到内存里称之为反序列化,即unpickling。

Python提供了pickle模块来实现序列化。

首先,我们尝试把一个对象序列化并写入文件:

>>> import pickle
>>> d = dict(name='Bob', age=20, score=88)
>>> pickle.dumps(d)
b'\x80\x03}q\x00(X\x03\x00\x00\x00ageq\x01K\x14X\x05\x00\x00\x00scoreq\x02KXX\x04\x00\x00\x00nameq\x03X\x03\x00\x00\x00Bobq\x04u.'

pickle.dumps()方法把任意对象序列化成一个bytes,然后,就可以把这个bytes写入文件。或者用另一个方法pickle.dump()直接把对象序列化后写入一个file-like Object:

>>> f = open('dump.txt', 'wb')
>>> pickle.dump(d, f)
>>> f.close()

看看写入的dump.txt文件,一堆乱七八糟的内容,这些都是Python保存的对象内部信息。

当我们要把对象从磁盘读到内存时,可以先把内容读到一个bytes,然后用pickle.loads()方法反序列化出对象,也可以直接用pickle.load()方法从一个file-like Object中直接反序列化出对象。我们打开另一个Python命令行来反序列化刚才保存的对象:

>>> f = open('dump.txt', 'rb')
>>> d = pickle.load(f)
>>> f.close()
>>> d
{'age': 20, 'score': 88, 'name': 'Bob'}

变量的内容又回来了!

当然,这个变量和原来的变量是完全不相干的对象,它们只是内容相同而已。

Pickle的问题和所有其他编程语言特有的序列化问题一样,就是它只能用于Python,并且可能不同版本的Python彼此都不兼容,因此,只能用Pickle保存那些不重要的数据,不能成功地反序列化也没关系。

JSON

如果我们要在不同的编程语言之间传递对象,就必须把对象序列化为标准格式,比如XML,但更好的方法是序列化为JSON,因为JSON表示出来就是一个字符串,可以被所有语言读取,也可以方便地存储到磁盘或者通过网络传输。JSON不仅是标准格式,并且比XML更快,而且可以直接在Web页面中读取,非常方便。

JSON表示的对象就是标准的JavaScript语言的对象,JSON和Python内置的数据类型对应如下:

JSON类型 Python类型
{} dict
[] list
"string" str
1234.56 int或float
true/false True/False
null None

Python内置的json模块提供了非常完善的Python对象到JSON格式的转换。我们先看看如何把Python对象变成一个JSON:

>>> import json
>>> d = dict(name='Bob', age=20, score=88)
>>> json.dumps(d)
'{"age": 20, "score": 88, "name": "Bob"}'

dumps()方法返回一个str,内容就是标准的JSON。类似的,dump()方法可以直接把JSON写入一个file-like Object

要把JSON反序列化为Python对象,用loads()或者对应的load()方法,前者把JSON的字符串反序列化,后者从file-like Object中读取字符串并反序列化:

>>> json_str = '{"age": 20, "score": 88, "name": "Bob"}'
>>> json.loads(json_str)
{'age': 20, 'score': 88, 'name': 'Bob'}

JSON进阶

Python的dict对象可以直接序列化为JSON的{},不过,很多时候,我们更喜欢用class表示对象,比如定义Student类,然后序列化:

import json

class Student(object):
def __init__(self, name, age, score):
self.name = name
self.age = age
self.score = score s = Student('Bob', 20, 88)
print(json.dumps(s))

运行代码,毫不留情地得到一个TypeError

Traceback (most recent call last):
...
TypeError: <__main__.Student object at 0x10603cc50> is not JSON serializable

错误的原因是Student对象不是一个可序列化为JSON的对象。

如果连class的实例对象都无法序列化为JSON,这肯定不合理!

别急,我们仔细看看dumps()方法的参数列表,可以发现,除了第一个必须的obj参数外,dumps()方法还提供了一大堆的可选参数:

https://docs.python.org/3/library/json.html#json.dumps

这些可选参数就是让我们来定制JSON序列化。前面的代码之所以无法把Student类实例序列化为JSON,是因为默认情况下,dumps()方法不知道如何将Student实例变为一个JSON的{}对象。

可选参数default就是把任意一个对象变成一个可序列为JSON的对象,我们只需要为Student专门写一个转换函数,再把函数传进去即可:

def student2dict(std):
return {
'name': std.name,
'age': std.age,
'score': std.score
}

这样,Student实例首先被student2dict()函数转换成dict,然后再被顺利序列化为JSON:

>>> print(json.dumps(s, default=student2dict))
{"age": 20, "name": "Bob", "score": 88}

不过,下次如果遇到一个Teacher类的实例,照样无法序列化为JSON。我们可以偷个懒,把任意class的实例变为dict

print(json.dumps(s, default=lambda obj: obj.__dict__))

因为通常class的实例都有一个__dict__属性,它就是一个dict,用来存储实例变量。也有少数例外,比如定义了__slots__的class。

同样的道理,如果我们要把JSON反序列化为一个Student对象实例,loads()方法首先转换出一个dict对象,然后,我们传入的object_hook函数负责把dict转换为Student实例:

def dict2student(d):
return Student(d['name'], d['age'], d['score'])
>>> json_str = '{"age": 20, "score": 88, "name": "Bob"}'
>>> print(json.loads(json_str, object_hook=dict2student))
<__main__.Student object at 0x10cd3c190>

python学习笔记 序列化的更多相关文章

  1. 廖雪峰Python学习笔记——序列化

    序列化 定义:程序运行时所有变量都存在内存中,把变量从内存中变成可存储或可传输的过程称为序列化pickling,在其他语言中称为serialization,marshalling,flattening ...

  2. Python学习笔记(十四)

    Python学习笔记(十四): Json and Pickle模块 shelve模块 1. Json and Pickle模块 之前我们学习过用eval内置方法可以将一个字符串转成python对象,不 ...

  3. Python 学习笔记(下)

    Python 学习笔记(下) 这份笔记是我在系统地学习python时记录的,它不能算是一份完整的参考,但里面大都是我觉得比较重要的地方. 目录 Python 学习笔记(下) 函数设计与使用 形参与实参 ...

  4. python学习笔记整理——字典

    python学习笔记整理 数据结构--字典 无序的 {键:值} 对集合 用于查询的方法 len(d) Return the number of items in the dictionary d. 返 ...

  5. VS2013中Python学习笔记[Django Web的第一个网页]

    前言 前面我简单介绍了Python的Hello World.看到有人问我搞搞Python的Web,一时兴起,就来试试看. 第一篇 VS2013中Python学习笔记[环境搭建] 简单介绍Python环 ...

  6. python学习笔记之module && package

    个人总结: import module,module就是文件名,导入那个python文件 import package,package就是一个文件夹,导入的文件夹下有一个__init__.py的文件, ...

  7. python学习笔记(六)文件夹遍历,异常处理

    python学习笔记(六) 文件夹遍历 1.递归遍历 import os allfile = [] def dirList(path): filelist = os.listdir(path) for ...

  8. python学习笔记--Django入门四 管理站点--二

    接上一节  python学习笔记--Django入门四 管理站点 设置字段可选 编辑Book模块在email字段上加上blank=True,指定email字段为可选,代码如下: class Autho ...

  9. python学习笔记--Django入门0 安装dangjo

    经过这几天的折腾,经历了Django的各种报错,翻译的内容虽然不错,但是与实际的版本有差别,会出现各种奇葩的错误.现在终于找到了解决方法:查看英文原版内容:http://djangobook.com/ ...

随机推荐

  1. 修改有数据oracle字段类型 从number转为varchar

    --修改有数据oracle字段类型 从number转为varchar--例:修改ta_sp_org_invoice表中RESCUE_PHONE字段类型,从number转为varchar --step1 ...

  2. javaX邮件发送

    /** * *  * @param mailServerHost 邮件服务器 * @param mailServerPort 端口 * @param validate 是否需要身份验证 * @para ...

  3. (原创)白话KMP算法(续)

    第二章:KMP改良算法 第一章里面我们讲完了KMP算法的next数组实现法,回忆一下其实最重要的内容无非就是一.理解 i 指针无用回溯的意义,二.理解 j 指针的定位和模式串中每个元素重复度的关系,三 ...

  4. Leetcode 674.最长递增序列

    最长递增序列 给定一个未经排序的整数数组,找到最长且连续的的递增序列. 示例 1: 输入: [1,3,5,4,7] 输出: 3 解释: 最长连续递增序列是 [1,3,5], 长度为3. 尽管 [1,3 ...

  5. XmlAutoGo

    一个基于 Selenium 3.14.0的脚本执行工具,支持自动化解决方案.Github https://github.com/freeol/XmlAutoGo Document https://xm ...

  6. Drools 7.4.1.Final参考手册(六) 用户手册

    用户手册 基础 无状态的知识Session Drools规则引擎拥有大量的用例和功能,我们要如何开始?你无须担心,这些复杂性是分层的,你可以用简单的用例来逐步入门. 无状态Session,无须使用推理 ...

  7. django之上传文件和图片

    文件上传:文件上传功能是网站开发中必定会使用到的技术,在django项目中也是如此,下面会详细讲述django中上传文件的前端和后端的具体处理步骤: 前端HTML代码实现: 1.在前端中,我们需要填入 ...

  8. week12第二轮迭代任务分配forZ.XML

    Z.XML第二轮迭代任务初步分配新鲜出炉,请关注! 以上便是任务分配列表,队员们会按照进度每天更改任务进度 当然,根据敏捷开发的方法,我们将在开发过程中根据情况迅速调整任务分配,以适应当时问题. Z- ...

  9. lintcode-64-合并排序数组 II

    64-合并排序数组 II 合并两个排序的整数数组A和B变成一个新的数组. 注意事项 你可以假设A具有足够的空间(A数组的大小大于或等于m+n)去添加B中的元素. 样例 给出 A = [1, 2, 3, ...

  10. 《SQL入门经典》总结

    <SQL入门经典>这本书从考试前就开了个头,一直到前两天才看完,拉的战线也够长的.放假来了,基本上什么内容都不记得了.好不容易看完了,就赶紧总结一下吧! 该书分为两大部分,第一部分是第1~ ...