HIGH - Highways

no tags 

In some countries building highways takes a lot of time... Maybe that's because there are many possiblities to construct a network of highways and engineers can't make up their minds which one to choose. Suppose we have a list of cities that can be connected directly. Your task is to count how many ways there are to build such a network that between every two cities there exists exactly one path. Two networks differ if there are two cities that are connected directly in the first case and aren't in the second case. At most one highway connects two cities. No highway connects a city to itself. Highways are two-way.

Input

The input begins with the integer t, the number of test cases (equal to about 1000). Then t test cases follow. The first line of each test case contains two integers, the number of cities (1<=n<=12) and the number of direct connections between them. Each next line contains two integers a and b, which are numbers of cities that can be connected. Cities are numbered from 1 to n. Consecutive test cases are separated with one blank line.

Output

The number of ways to build the network, for every test case in a separate line. Assume that when there is only one city, the answer should be 1. The answer will fit in a signed 64-bit integer.

Example

Sample input:
4
4 5
3 4
4 2
2 3
1 2
1 3 2 1
2 1 1 0 3 3
1 2
2 3
3 1 Sample output:
8
1
1
3

 

题目链接:SPOJ HIGH

高斯消元求行列式入门题。矩阵树定理,用D矩阵和A矩阵作差得到G,然后求G的任意一个$n−1$阶矩阵行列式,其中用到高斯消元

代码:

#include <stdio.h>
#include <iostream>
#include <algorithm>
#include <cstdlib>
#include <cstring>
#include <bitset>
#include <string>
#include <stack>
#include <cmath>
#include <queue>
#include <set>
#include <map>
using namespace std;
#define INF 0x3f3f3f3f
#define LC(x) (x<<1)
#define RC(x) ((x<<1)+1)
#define MID(x,y) ((x+y)>>1)
#define fin(name) freopen(name,"r",stdin)
#define fout(name) freopen(name,"w",stdout)
#define CLR(arr,val) memset(arr,val,sizeof(arr))
#define FAST_IO ios::sync_with_stdio(false);cin.tie(0);
typedef pair<int, int> pii;
typedef long long LL;
const double PI = acos(-1.0);
const int N = 15;
double Mat[N][N];
void init()
{
CLR(Mat, 0);
}
double Gaussian(int ne, int nv)
{
int i, j;
double ans = 1;
for (int ce = 1, cv = 1; ce <= ne && cv <= nv; ++ce, ++cv)
{
int te = ce;
for (i = ce + 1; i <= ne; ++i)
if (fabs(Mat[i][cv]) > fabs(Mat[ce][cv]))
te = ce;
if (Mat[te][cv] == 0)
return 0;
if (te != ce)
{
for (i = cv; i <= nv; ++i)
swap(Mat[ce][i], Mat[te][i]);
ans *= -1;
}
ans *= Mat[ce][cv];
for (j = cv + 1; j <= nv; ++j)
Mat[ce][j] /= Mat[ce][cv];
for (i = ce + 1; i <= ne; ++i)
for (j = cv + 1; j <= nv; ++j)
Mat[i][j] -= Mat[i][cv] * Mat[ce][j];
}
return ans;
}
int main(void)
{
int T;
int n, m, u, v, i;
scanf("%d", &T);
while (T--)
{
init();
scanf("%d%d", &n, &m);
for (i = 0; i < m; ++i)
{
scanf("%d%d", &u, &v);
++Mat[u][u];
++Mat[v][v];
Mat[u][v] = -1;
Mat[v][u] = -1;
}
debug(n,n);
printf("%.0f\n", Gaussian(n - 1, n - 1));
}
return 0;
}

SPOJ HIGH(生成树计数,高斯消元求行列式)的更多相关文章

  1. HDU4870_Rating_双号从零单排_高斯消元求期望

    原题链接:http://acm.hdu.edu.cn/showproblem.php?pid=4870 原题: Rating Time Limit: 10000/5000 MS (Java/Other ...

  2. HDU 5833 (2016大学生网络预选赛) Zhu and 772002(高斯消元求齐次方程的秩)

    网络预选赛的题目……比赛的时候没有做上,确实是没啥思路,只知道肯定是整数分解,然后乘起来素数的幂肯定是偶数,然后就不知道该怎么办了… 最后题目要求输出方案数,首先根据题目应该能写出如下齐次方程(从别人 ...

  3. 【BZOJ2137】submultiple 高斯消元求伯努利数

    [BZOJ2137]submultiple Description 设函数g(N)表示N的约数个数.现在给出一个数M,求出所有M的约数x的g(x)的K次方和. Input 第一行输入N,K.N表示M由 ...

  4. 【bzoj2115】[Wc2011] Xor DFS树+高斯消元求线性基

    题目描述 输入 第一行包含两个整数N和 M, 表示该无向图中点的数目与边的数目. 接下来M 行描述 M 条边,每行三个整数Si,Ti ,Di,表示 Si 与Ti之间存在 一条权值为 Di的无向边. 图 ...

  5. 【bzoj3105】[cqoi2013]新Nim游戏 高斯消元求线性基

    题目描述 传统的Nim游戏是这样的:有一些火柴堆,每堆都有若干根火柴(不同堆的火柴数量可以不同).两个游戏者轮流操作,每次可以选一个火柴堆拿走若干根火柴.可以只拿一根,也可以拿走整堆火柴,但不能同时从 ...

  6. 【bzoj4004】[JLOI2015]装备购买 贪心+高斯消元求线性基

    题目描述 脸哥最近在玩一款神奇的游戏,这个游戏里有 n 件装备,每件装备有 m 个属性,用向量zi(aj ,.....,am) 表示 (1 <= i <= n; 1 <= j < ...

  7. 【bzoj4269】再见Xor 高斯消元求线性基

    题目描述 给定N个数,你可以在这些数中任意选一些数出来,每个数可以选任意多次,试求出你能选出的数的异或和的最大值和严格次大值. 输入 第一行一个正整数N. 接下来一行N个非负整数. 输出 一行,包含两 ...

  8. hdu 4870 rating(高斯消元求期望)

    Rating Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Sub ...

  9. HDU3949/AcWing210 XOR (高斯消元求线性基)

    求第k小的异或和,用高斯消元求更简单一些. 1 //用高斯消元求线性基 2 #include<bits/stdc++.h> 3 using namespace std; 4 #define ...

随机推荐

  1. ubuntu以root进入图形化界面

    sudo nautilus 可以进行一些文件夹移动操作,不会出现权限的问题

  2. ECSHOP和SHOPEX快递单号查询申通插件V8.6专版

    发布ECSHOP说明: ECSHOP快递物流单号查询插件特色 本ECSHOP快递物流单号跟踪插件提供国内外近2000家快递物流订单单号查询服务例如申通快递.顺丰快递.圆通快递.EMS快递.汇通快递.宅 ...

  3. YII2.O学习三 前后台用户数据表分离

    之前我们完成了Advanced 模板安装,也完成了安装adminlte 后台模板,这一步是针对前端和后台用户使用不同的数据库表来管理,做到前后台用户分离的效果: 复制一张user数据表并重命名为adm ...

  4. Node.js中的不安全跳转如何防御详解

    Node.js中的不安全跳转如何防御详解 导语: 早年在浏览器大战期间,有远见的Chrome认为要运行现代Web应用,浏览器必须有一个性能非常强劲的Java引擎,于是Google自己开发了一个高性能的 ...

  5. c语言中 *p++ 和 (*p)++ 和 *(p++) 和 *(++p) 和++(*p)和 *(p--)和 *(--p)有什么区别?

    *p++是指下一个地址; (*p)++是指将*p所指的数据的值加一; /******************解释**********************/ ->C编译器认为*和++是同优先级 ...

  6. 在amazon linux上安装Jenkins

    原文请参考: https://medium.com/@itsmattburgess/installing-jenkins-on-amazon-linux-16aaa02c369c

  7. [POJ1785]Binary Search Heap Construction(笛卡尔树)

    Code #include <cstdio> #include <algorithm> #include <cstring> #define N 500010 us ...

  8. HASH算法小结

    一.简述 HASH算法的本质是特征提取——将某种不太好表示的特征,通过某种压缩的方式映射成一个值.这样,就可以优雅解决一部分难以解决的特征统计问题. 同时考虑到hash算法的本质是个概率算法,因此并不 ...

  9. 【转】Git远程操作详解

    Git是目前最流行的版本管理系统,学会Git几乎成了开发者的必备技能. Git有很多优势,其中之一就是远程操作非常简便.本文详细介绍5个Git命令,它们的概念和用法,理解了这些内容,你就会完全掌握Gi ...

  10. Delphi中客户端获取数据库更新信息(更新条数)

    1.SQL语句 from tb where xxx='XXX') //不存在,则插入数据 begin insert into tb(xxx) values('XXX') //这里自己定义,插入或更新都 ...