大M正在学习函数的光滑性并对Lipshitz常数非常感兴趣:当一个定义域为$[l,r]$的函数$f$,对于定义域内的任意$x,y$都有$\left|f(x)-f(y)\right|\leq K\cdot\left|x-y\right|$时,则称$K$的最小值为该函数在$[l,r]$上的Lipshitz常数。
然而大M并不满足于函数,所以他定义:对于一个序列$v_{1\cdots n}$,当$1\leq x\lt y\leq n$且$x,y$均为整数时,同样满足$\left|v_x-v_y\right|\leq K\cdot\left|x-y\right|$,则称$K$的最小整数值为序列$v$的Lipschitz常数。
现在给你一个长度为$n$的序列$v_{1\cdots n}$并给出$q$个询问,对于每对询问$[l,r]$,你需要求出$v_{l\cdots r}$的所有子序列$v_{x\cdots y}(l\leq x\lt y\leq r)$的Lipshitz常数之和。这可难不倒会编程的你。

$n\leq 10^5,q\leq 100$

转换一下,$K=max\left\{\dfrac{\left|v_x-v_y\right|}{\left|x-y\right|}\right\}$

题解给了一个结论:最终的答案一定是某长度为$2$的子序列,还说“这么简单,不予证明”,但还是得证一下的

用归纳法,若(长度为$2\cdots n$的序列的答案)都由长度为$2$的子序列产生,我们将要证明:长度为$n+1$的序列答案也由长度为$2$的子序列产生

设它是$a_{1\cdots n+1}$,若答案为它本身而不是其他子序列,那么$a_1$和$a_{n+1}$一个是最小一个是最大,不妨设$a_1\lt a_{n+1}$

那么这个序列的Lipshitz常数为$\dfrac{a_{n+1}-a_1}n$,因为其他长度的子序列的答案都由长度为$2$的子序列产生,那么对$1\leq i\leq n$,都有$\dfrac{a_{n+1}-a_1}n\gt\left|a_i-a_{i+1}\right|$

把这$n$个不等式加起来,得$a_{n+1}-a_1\gt \left|a_1-a_2\right|+\cdots+\left|a_n-a_{n+1}\right|$

整理,得$a_2+\left|a_2-a_3\right|+\cdots+\left|a_{n-1}-a_n\right|-a_n\lt 0$

移一下绝对值外的,再补上几项,得$a_n-a_{n-1}+\cdots+a_3-a_2\gt\left|a_n-a_{n-1}\right|+\cdots+\left|a_3-a_2\right|$

一个数取绝对值后不会变小,所以这里显然矛盾,原命题得证

因为长度为$2$的序列的答案显然长度为$2$,所以对于任意$n\geq 2$,长度为$n$的序列,答案都由长度为$2$的子序列产生

证完结论,我们来找答案

先处理处所有长度为$2$的子序列的答案:$d_i=\left|v_i-v_{i+1}\right|$

那么$v_{l\cdots r}$的Lipshitz常数为$max\left\{d_{l\cdots r-1}\right\}$

预处理出每个$d_i$向左最远能做哪些区间的最大值($\geq$),向右最远能做哪些区间的最大值($\gt$)(一个大于等于一个大于是为了不重不漏覆盖所有答案),这里用ST表预处理,再二分即可

然后每次询问就$O(n)$统计一下即可

#include<stdio.h>
#define ll long long
int f[100010][17],log2[100010],right[100010],left[100010];
int abs(int x){return x>0?x:-x;}
int max(int a,int b){return a>b?a:b;}
int min(int a,int b){return a<b?a:b;}
int query(int l,int r){
	int k=log2[r-l+1];
	return max(f[l][k],f[r-(1<<k)+1][k]);
}
int main(){
	int n,q,i,j,l,r,mid,ans;
	ll res;
	scanf("%d%d",&n,&q);
	for(i=1;i<=n;i++)scanf("%d",f[i]);
	log2[1]=0;
	for(i=2;i<=n;i++)log2[i]=log2[i>>1]+1;
	n--;
	for(i=1;i<=n;i++)f[i][0]=abs(f[i][0]-f[i+1][0]);
	for(j=1;j<17;j++){
		for(i=1;i<=n;i++){
			f[i][j]=f[i][j-1];
			if(i+(1<<(j-1))<=n)f[i][j]=max(f[i][j],f[i+(1<<(j-1))][j-1]);
		}
	}
	for(i=1;i<=n;i++){
		l=i+1;
		r=n;
		ans=i;
		while(l<=r){
			mid=(l+r)>>1;
			if(query(i+1,mid)<=f[i][0]){
				ans=mid;
				l=mid+1;
			}else
				r=mid-1;
		}
		right[i]=ans;
		l=1;
		r=i-1;
		ans=i;
		while(l<=r){
			mid=(l+r)>>1;
			if(query(mid,i-1)<f[i][0]){
				ans=mid;
				r=mid-1;
			}else
				l=mid+1;
		}
		left[i]=ans;
	}
	while(q--){
		scanf("%d%d",&l,&r);
		r--;
		res=0;
		for(i=l;i<=r;i++)res+=(i-max(l,left[i])+1)*(ll)(min(r,right[i])-i+1)*(ll)f[i][0];
		printf("%lld\n",res);
	}
}

[Contest20171109]函数(lipshitz)的更多相关文章

  1. Python 小而美的函数

    python提供了一些有趣且实用的函数,如any all zip,这些函数能够大幅简化我们得代码,可以更优雅的处理可迭代的对象,同时使用的时候也得注意一些情况   any any(iterable) ...

  2. 探究javascript对象和数组的异同,及函数变量缓存技巧

    javascript中最经典也最受非议的一句话就是:javascript中一切皆是对象.这篇重点要提到的,就是任何jser都不陌生的Object和Array. 有段时间曾经很诧异,到底两种数据类型用来 ...

  3. JavaScript权威指南 - 函数

    函数本身就是一段JavaScript代码,定义一次但可能被调用任意次.如果函数挂载在一个对象上,作为对象的一个属性,通常这种函数被称作对象的方法.用于初始化一个新创建的对象的函数被称作构造函数. 相对 ...

  4. C++对C的函数拓展

    一,内联函数 1.内联函数的概念 C++中的const常量可以用来代替宏常数的定义,例如:用const int a = 10来替换# define a 10.那么C++中是否有什么解决方案来替代宏代码 ...

  5. 菜鸟Python学习笔记第一天:关于一些函数库的使用

    2017年1月3日 星期二 大一学习一门新的计算机语言真的很难,有时候连函数拼写出错查错都能查半天,没办法,谁让我英语太渣. 关于计算机语言的学习我想还是从C语言学习开始为好,Python有很多语言的 ...

  6. javascript中的this与函数讲解

    前言 javascript中没有块级作用域(es6以前),javascript中作用域分为函数作用域和全局作用域.并且,大家可以认为全局作用域其实就是Window函数的函数作用域,我们编写的js代码, ...

  7. 复杂的 Hash 函数组合有意义吗?

    很久以前看到一篇文章,讲某个大网站储存用户口令时,会经过十分复杂的处理.怎么个复杂记不得了,大概就是先 Hash,结果加上一些特殊字符再 Hash,结果再加上些字符.再倒序.再怎么怎么的.再 Hash ...

  8. JS核心系列:浅谈函数的作用域

    一.作用域(scope) 所谓作用域就是:变量在声明它们的函数体以及这个函数体嵌套的任意函数体内都是有定义的. function scope(){ var foo = "global&quo ...

  9. C++中的时间函数

    C++获取时间函数众多,何时该用什么函数,拿到的是什么时间?该怎么用?很多人都会混淆. 本文是本人经历了几款游戏客户端和服务器开发后,对游戏中时间获取的一点总结. 最早学习游戏客户端时,为了获取最精确 ...

随机推荐

  1. 杭电hdu 2089 数位dp

    杭州人称那些傻乎乎粘嗒嗒的人为62(音:laoer). 杭州交通管理局经常会扩充一些的士车牌照,新近出来一个好消息,以后上牌照,不再含有不吉利的数字了,这样一来,就可以消除个别的士司机和乘客的心理障碍 ...

  2. 7月19日day11总结

    今天学习过程和小结 上午进行测试复习了 1,hdfs中namenode和datanode作用 2,hdfs副本存放机制 3,mapreduce计算处理过程 4,格式化hdfs命令 5,hdfs的核心配 ...

  3. wait , notify 模拟 Queue

    package com.itdoc.multi.sync009; import java.util.LinkedList; import java.util.concurrent.TimeUnit; ...

  4. Spring学习--依赖注入的方式

    Spring 依赖注入: 属性注入(最常使用) 构造函数注入 工厂方法注入(很少使用,不推荐) 属性注入:通过 setter 方法注入 Bean 的属性值或依赖的对象 , 使用<property ...

  5. koala 编译scss不支持中文解决方案

    方法一: 在scss文件第一行加上代码:@charset "utf-8"; 方法二: 进入到Koala 安装目录 C:\Koala\rubygems\gems\sass-3.4.9 ...

  6. WEB API 版本控制

    参照 http://blog.csdn.net/hengyunabc/article/details/20506345

  7. 【hdu3080】01背包(容量10^7)

    [题意]n个物品,有wi和vi,组成若干个联通块,只能选取一个联通块,问得到m的价值时最小要多少空间(v).n<=50,v<=10^7 [题解] 先用并查集找出各个联通块. 这题主要就是v ...

  8. 【洛谷 P1666】 前缀单词 (Trie)

    题目链接 考试时暴搜50分...其实看到"单词","前缀"这种字眼时就要想到\(Trie\)的,哎,我太蒻了. 以一个虚点为根,建一棵\(Trie\),然后\( ...

  9. compositionstart 、 compositionend 、 input都存在时的解决办法

    $(function () { var cpLock = true; $('#textbox').off().on({ compositionstart: function () {//中文输入开始 ...

  10. bzoj 4569 [Scoi2016]萌萌哒 并查集 + ST表

    题目链接 Description 一个长度为\(n\)的大数,用\(S_1S_2S_3...S_n\)表示,其中\(S_i\)表示数的第\(i\)位,\(S_1\)是数的最高位,告诉你一些限制条件,每 ...