题目链接:http://poj.org/problem?id=3621

Sightseeing Cows

Time Limit: 1000MS   Memory Limit: 65536K
Total Submissions: 11526   Accepted: 3930

Description

Farmer John has decided to reward his cows for their hard work by taking them on a tour of the big city! The cows must decide how best to spend their free time.

Fortunately, they have a detailed city map showing the L (2 ≤ L ≤ 1000) major landmarks (conveniently numbered 1.. L) and the P (2 ≤ P ≤ 5000) unidirectional cow paths that join them. Farmer John will drive the cows to a starting landmark of their choice, from which they will walk along the cow paths to a series of other landmarks, ending back at their starting landmark where Farmer John will pick them up and take them back to the farm. Because space in the city is at a premium, the cow paths are very narrow and so travel along each cow path is only allowed in one fixed direction.

While the cows may spend as much time as they like in the city, they do tend to get bored easily. Visiting each new landmark is fun, but walking between them takes time. The cows know the exact fun values Fi (1 ≤ Fi ≤ 1000) for each landmark i.

The cows also know about the cowpaths. Cowpath i connects landmark L1i to L2i (in the direction L1i -> L2i ) and requires time Ti (1 ≤ Ti ≤ 1000) to traverse.

In order to have the best possible day off, the cows want to maximize the average fun value per unit time of their trip. Of course, the landmarks are only fun the first time they are visited; the cows may pass through the landmark more than once, but they do not perceive its fun value again. Furthermore, Farmer John is making the cows visit at least two landmarks, so that they get some exercise during their day off.

Help the cows find the maximum fun value per unit time that they can achieve.

Input

* Line 1: Two space-separated integers: L and P
* Lines 2..L+1: Line i+1 contains a single one integer: Fi
* Lines L+2..L+P+1: Line L+i+1 describes cow path i with three space-separated integers: L1i , L2i , and Ti

Output

* Line 1: A single number given to two decimal places (do not perform explicit rounding), the maximum possible average fun per unit time, or 0 if the cows cannot plan any trip at all in accordance with the above rules.

Sample Input

5 7
30
10
10
5
10
1 2 3
2 3 2
3 4 5
3 5 2
4 5 5
5 1 3
5 2 2

Sample Output

6.00

Source

题目概括:

有 L 个 landmarks, P条 cow path(有向边),每个点可获得娱乐值 Fi ,不过每条边需要花费时间 Ti,我们要求的是选走任意几个点(路径要构成一个环)单位时间获得最大的娱乐值即 求 ΣFi / ΣTi 的最大值。

解题思路:

要从N中取K,并且求 ΣFi / ΣTi 的最大值,很明显用二分+01分数规划

令 ΣFi / ΣTi >= X, 则 ΣFi - ΣTi*X >= 0, 也就转换为了求这个有向图是否存在正环,我们直到SPFA可以轻松通过dfs判断点的访问次数来判断是否有负环,我们只需要把SPFA的求最短路的判断条件换成求最长路的判断条件即可以判断是否存在正环了。

AC code:

 ///POJ 3621 01分数规划+SPFA判断正环
#include <iostream>
#include <stdio.h>
#include <stdlib.h>
#include <algorithm>
#include <string.h>
#include <vector>
#include <math.h>
#include <limits>
#include <set>
#include <map>
#define INF ox3f3f3f3f
using namespace std; const int MAXN = ;
int v[MAXN]; ///点权
int fst[MAXN], vb[MAXN], vc[MAXN], nxt[MAXN];
bool vis[MAXN], fh; ///记录访问点的次数
double dist[MAXN]; ///用于判断正环
int N, M, cnt; void add(int a, int b, int c) ///静态邻接表
{
++cnt;
nxt[cnt] = fst[a];
fst[a] = cnt;
vb[cnt] = b;
vc[cnt] = c; ///边权
} void spfa_dfs(int p, double x)
{
vis[p] = true;
for(int e = fst[p]; e; e = nxt[e])
{
double C = v[vb[e]]-x*vc[e];
if(dist[vb[e]] >= C+dist[p]) continue; ///与spfa判断负环恰好相反,只取大的
if(vis[vb[e]])
{
fh = ; return;
}
dist[vb[e]] = C+dist[p];
spfa_dfs(vb[e], x);
if(fh) return;
}
vis[p] = ;
} bool ok(double x)
{
for(int i = ; i <= N; i++)
{
vis[i] = dist[i] = ;
}
fh = ;
for(int i = ; i <= N; i++)
{
spfa_dfs(i, x);
if(fh) return true; ///有正环
}
return false;
}
int main()
{
scanf("%d%d", &N, &M);
for(int i = ; i <= N; i++)
scanf("%d", &v[i]);
for(int i = ; i <= M; i++)
{
int a, b, c;
scanf("%d%d%d", &a, &b, &c);
add(a, b, c);
}
double l = , r = ;
while(r-l>1e-)
{
double mid = (l+r)/2.0;
if(ok(mid)) l = mid;
else r = mid;
}
printf("%.2lf\n", l); return ;
}

POJ 3621 Sightseeing Cows 【01分数规划+spfa判正环】的更多相关文章

  1. POJ 3621 Sightseeing Cows 01分数规划,最优比例环的问题

    http://www.cnblogs.com/wally/p/3228171.html 题解请戳上面 然后对于01规划的总结 1:对于一个表,求最优比例 这种就是每个点位有benefit和cost,这 ...

  2. POJ 3621 Sightseeing Cows | 01分数规划

    题目: http://poj.org/problem?id=3621 题解: 二分答案,检查有没有负环 #include<cstdio> #include<algorithm> ...

  3. POJ3621Sightseeing Cows[01分数规划 spfa(dfs)负环 ]

    Sightseeing Cows Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 9703   Accepted: 3299 ...

  4. 2018.09.24 bzoj1486: [HNOI2009]最小圈(01分数规划+spfa判负环)

    传送门 答案只保留了6位小数WA了两次233. 这就是一个简单的01分数规划. 直接二分答案,根据图中有没有负环存在进行调整. 注意二分边界. 另外dfs版spfa判负环真心快很多. 代码: #inc ...

  5. bzoj3597[Scoi2014]方伯伯运椰子 01分数规划+spfa判负环

    3597: [Scoi2014]方伯伯运椰子 Time Limit: 30 Sec  Memory Limit: 64 MBSubmit: 594  Solved: 360[Submit][Statu ...

  6. 2018.09.09 poj2949Word Rings(01分数规划+spfa判环)

    传送门 这题要先巧妙的转化一下. 对于每个字符串,我们把头尾的两个小字符串对应的点连边,边权是这个字符串的长度. 这样最多会出现26*26个点. 这个时候就只用求出边权和跟边数的最大比值了. 这个显然 ...

  7. [HNOI2009]最小圈 分数规划 spfa判负环

    [HNOI2009]最小圈 分数规划 spfa判负环 题面 思路难,代码简单. 题目求圈上最小平均值,问题可看为一个0/1规划问题,每个边有\(a[i],b[i]\)两个属性,\(a[i]=w(u,v ...

  8. 洛谷P2868 [USACO07DEC]观光奶牛Sightseeing Cows(01分数规划)

    题意 题目链接 Sol 复习一下01分数规划 设\(a_i\)为点权,\(b_i\)为边权,我们要最大化\(\sum \frac{a_i}{b_i}\).可以二分一个答案\(k\),我们需要检查\(\ ...

  9. 2018.09.12 poj3621Sightseeing Cows(01分数规划+spfa判环)

    传送门 01分数规划板题啊. 发现就是一个最优比率环. 这个直接二分+spfa判负环就行了. 代码: #include<iostream> #include<cstdio> # ...

随机推荐

  1. Farey Sequence(欧拉函数板子题)

    题目链接:http://poj.org/problem?id=2478 Farey Sequence Time Limit: 1000MS   Memory Limit: 65536K Total S ...

  2. 牛客网Java刷题知识点之OSI七层参考模型 和 TCP/IP五层参考模型

    不多说,直接上干货! 福利 => 每天都推送 欢迎大家,关注微信扫码并加入我的4个微信公众号:   大数据躺过的坑      Java从入门到架构师      人工智能躺过的坑          ...

  3. Js简易代码生成工具

    代码 javascript:(function(){ document.body.innerHTML = '<textarea id="txtTemplate" style= ...

  4. 通过JavaScript动态生成html控件

    示例代码 <html> <head> <meta http-equiv="Content-Type" content="text/html& ...

  5. nyoj 1208——水题系列——————【dp】

    水题系列 时间限制:1000 ms  |  内存限制:65535 KB 难度:2   描述     给你一个有向图,每条边都有一定的权值,现在让你从图中的任意一点出发,每次走的边的权值必须必上一次的权 ...

  6. 【VMware】安装不同系统的虚拟机出现开机黑屏的情况

    解决方法一: 1.以管理员身份运行命令提示符(cmd.exe),输入命令 netsh winsock show catalog 按下回车键执行命令(可以看到VMware注册了两个LSP:vSocket ...

  7. 虚拟机中Linux设置当前ip

    1.查看当前IP,查看网卡信息 ifconfig 2.设置临时IP ifconfig eth0 192.168.1.163 netmask 255.255.255.0 eth0表示第一块网卡 设置完之 ...

  8. c# 远程连接共享文件

    c# 远程连接共享文件 /// <summary> /// 连接远程共享文件夹 /// </summary> /// <param name="path&quo ...

  9. 项目管理系统 TAIGA 部署

    题记 使用了 MantisBT 一段时间,觉得功能太少,只局限在错误跟踪,而且操作体验比较差,界面很糟糕,很早就想将其换掉. 偶然发现一个很不错的新选择:Taiga,于是就试着将其部署下来,发现绝对是 ...

  10. 重构指南 - 尽快返回(Return ASAP )

    尽快返回就是如果方法中的条件判断可以得到结果,则尽快返回该结果. 1. 检查条件,如果不满足就立即返回,不执行下面的逻辑. 2. 当包含大量的if else嵌套,代码可读性变差,也容易出现异常. 3. ...