传送门:

http://acm.hdu.edu.cn/showproblem.php?pid=1221

Rectangle and Circle

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 3434    Accepted Submission(s): 904

Problem Description
Given a rectangle and a circle in the coordinate system(two edges of the rectangle are parallel with the X-axis, and the other two are parallel with the Y-axis), you have to tell if their borders intersect.

Note: we call them intersect even if they are just tangent. The circle is located by its centre and radius, and the rectangle is located by one of its diagonal.

 
Input
The first line of input is a positive integer P which indicates the number of test cases. Then P test cases follow. Each test cases consists of seven real numbers, they are X,Y,R,X1,Y1,X2,Y2. That means the centre of a circle is (X,Y) and the radius of the circle is R, and one of the rectangle's diagonal is (X1,Y1)-(X2,Y2).
 
Output
For each test case, if the rectangle and the circle intersects, just output "YES" in a single line, or you should output "NO" in a single line.
 
Sample Input
2
1 1 1 1 2 4 3
1 1 1 1 3 4 4.5
 
Sample Output
YES
NO
 
Author
weigang Lee
 
Source
 
Recommend
 
    判断圆和矩形是不是相交的
 
    给出圆心点,半径,矩形对角线两点
 
    我们只要求出圆心到矩形的最短距离L和圆心到矩形的最长距离R.
    如果L>r(r为圆半径),圆肯定与矩形不相交.
    如果R<r,圆包含了矩形,依然与矩形不相交.
    如果L<=r且R>=r,那么圆肯定与矩形相交.
 
    最短距离 圆心到边上点的距离的最小值
    最长距离:圆心到四个点距离的最大值
 
    注意矩形是平行xy轴的,计算方便了很多
 
code:
#include<bits/stdc++.h>
using namespace std;
double dis(double x1,double y1,double x2,double y2)
{
return sqrt((x1-x2)*(x1-x2)+(y1-y2)*(y1-y2));
}
double f(double x,double y,double x1,double y1,double x2,double y2)//圆心到矩形边的距离最小值
{
if(x1==x2)
{
if(y<=max(y1,y2)&&y>=min(y1,y2))
{
return fabs(x-x1);
}else
{
double b=dis(x,y,x1,y1);
double c=dis(x,y,x2,y2);
double result=min(b,c);
return result;
}
}else if(y1==y2)
{
if(x<=max(x1,x2)&&x>=min(x1,x2))
{
return fabs(y-y1);
}else
{
double b=dis(x,y,x1,y1);
double c=dis(x,y,x2,y2);
double result=min(b,c);
return result;
}
}
}
int main()
{
double x,y,r,x1,y1,x2,y2;
int t;
scanf("%d",&t);
while(t--)
{
scanf("%lf %lf %lf %lf %lf %lf %lf",&x,&y,&r,&x1,&y1,&x2,&y2);
double x3=x1,y3=y2;
double x4=x2,y4=y1;
double l1=f(x,y,x1,y1,x3,y3);
double l2=f(x,y,x1,y1,x4,y4);
double l3=f(x,y,x2,y2,x3,y3);
double l4=f(x,y,x2,y2,x4,y4); double L=min(l1,min(l2,min(l3,l4))); double r1=dis(x,y,x1,y1);
double r2=dis(x,y,x2,y2);
double r3=dis(x,y,x3,y3);
double r4=dis(x,y,x4,y4); double R=max(r1,max(r2,max(r3,r4))); if(L>r)
printf("NO\n");
else if(R<r)
printf("NO\n");
else if(L<=r&&R>=r)
printf("YES\n");
}
return ;
}

HDU 1221 Rectangle and Circle(判断圆和矩形是不是相交)的更多相关文章

  1. 判断圆和矩形是否相交C - Rectangle and Circle

    Description Given a rectangle and a circle in the coordinate system(two edges of the rectangle are p ...

  2. HDU 1221 Rectangle and Circle 考虑很多情况,good题

    http://acm.hdu.edu.cn/showproblem.php?pid=1221 114 92 31 95 13 96 3 这题只需要判断圆和矩形是否相交,然后在里面是不算相交的. 那么就 ...

  3. poj1410(判断线段和矩形是否相交)

    题目链接:https://vjudge.net/problem/POJ-1410 题意:判断线段和矩形是否相交. 思路:注意这里的相交包括线段在矩形内,因此先判断线段与矩形的边是否相交,再判断线段的两 ...

  4. Judge Route Circle --判断圆路线

    Initially, there is a Robot at position (0, 0). Given a sequence of its moves, judge if this robot m ...

  5. HDU 1110 Equipment Box (判断一个大矩形里面能不能放小矩形)

    传送门: http://acm.hdu.edu.cn/showproblem.php?pid=1110 Equipment Box Time Limit: 2000/1000 MS (Java/Oth ...

  6. PHP判断两个矩形是否相交

    <?php $s = is_rect_intersect(1,2,1,2,4,5,0,3); var_dump($s); /* 如果两个矩形相交,那么矩形A B的中心点和矩形的边长是有一定关系的 ...

  7. C# 判断两个矩形是否相交

    源代码 public bool JudgeRectangleIntersect(double RecAleftX, double RecAleftY, double RecArightX, doubl ...

  8. 【LeetCode】1401. 圆和矩形是否有重叠 Circle and Rectangle Overlapping

    作者: 负雪明烛 id: fuxuemingzhu 个人博客:http://fuxuemingzhu.cn/ 目录 题目描述 题目大意 解题方法 利用公式 日期 题目地址:https://leetco ...

  9. A Round Peg in a Ground Hole - POJ 1584 (判断凸多边形&判断点在多边形内&判断圆在多边形内)

    题目大意:首先给一个圆的半径和圆心,然后给一个多边形的所有点(多边形按照顺时针或者逆时针给的),求,这个多边形是否是凸多边形,如果是凸多边形在判断这个圆是否在这个凸多边形内.   分析:判断凸多边形可 ...

随机推荐

  1. unity发布安卓lua路径不存在问题

    项目用的是xlua 采用自定义加载方式 使用File去读取路径下的文件,lua文件本来放在了StreamingAssets路径下 PC运行无问题,发布安卓后,居然提示路径不存在. 查了下资料后发现,F ...

  2. xss攻击汇总--转

    (1)普通的XSS JavaScript注入<SCRIPT SRC=http://3w.org/XSS/xss.js></SCRIPT>(2)IMG标签XSS使用JavaScr ...

  3. jQuery 菜单小练习(实现点击和移动鼠标效果)

    这个代码的练习是点击事件后 如何用jQuery联动的方式找到相关标签 实现的结果是点击菜单一或者菜单二等 会出现相关菜品,并隐藏其他菜品.鼠标移动才菜品上会在右侧框内出现相关菜品的价格.实现特殊的效果 ...

  4. [转]ASP.NET Web API系列教程(目录)

    本文转自:http://www.cnblogs.com/r01cn/archive/2012/11/11/2765432.html 注:微软随ASP.NET MVC 4一起还发布了一个框架,叫做ASP ...

  5. 8、列表:ion-list

    1.基本样式 no-lines 属性 隐藏列表项之间的分割符 inset 属性 去掉 ion-list的 外边框. 默认 的 ion-list 是有外边框的.   /* ---示例代码----*/ & ...

  6. 1、块:ion-item

    因为ion-item 一般写于ion-list里 所以在ion-list里面我会仔细讲解. 1. ion-badge /* --- page1.html ---*/ <ion-navbar *n ...

  7. hibernate事务管理 (jdbc jta)

    hibernate的两种事务管理jdbc 和jta方式.下边说说两者的区别一.说明一下jdbc和jta方式事务管理的区别:JDBC事务由Connnection管理,也就是说,事务管理实际上是在JDBC ...

  8. OLEDB事务

    学过数据的人一般都知道事务的重要性,事务是一种对数据源的一系列更新进行分组或者批处理以便当所有更新都成功时同时提交更新,或者任意一个更新失败时进行回滚将数据库中的数据回滚到执行批处理中的所有操作之前的 ...

  9. webpack、babel模块、模块化

    一.webpack介绍 webpack这个工具非常强大,解决了前端很繁琐的一些工具流程繁琐的事情.中文官网链接地址:https://www.webpackjs.com/ 1.为什么要使用webpack ...

  10. vuex深入浅出

    本文主要记录使用vuex的使用场景.重要组成部分和学习心得. 1.说在前面 学习vue有两周的时间了,目前已经对vue的基础使用比较熟悉了.但是一直对vuex的使用耿耿于怀,这么说是因为总是不太理解, ...