题目链接:https://www.luogu.org/problemnew/show/P3410

这个题就是求一个最大权闭合图

在一个图中,一些点构成一个集合,且集合中的出边指向的终点也在这个集合中,则我们称这个集合为闭合图。

整个图中点的权值之和最大的闭合图,为最大权闭合图。

最大权闭合图可以用网络流来求

造出一个超级源点S和一个超级汇点T,把S连边到所有带有正权的点上,容量是这个点的权;把所有带负权的点连边到T,容量是这个点的权的相反数。原来的边呢,把它们的容量都设成无限大。

(带负权的是员工需要花费的,正权是我们的收入,收入-花费为所求)

之后我们跑一遍最大流。

答案就是图中的所有正权值之和减去最小割容量。

#include <queue>
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
using namespace std;
const int maxn = 1e6 + 10;
const int inf = 1e9;
int n, m, s, t, deep[maxn], maxflow, w[maxn], ans;
struct edge{
int next, to, flow;
}e[maxn<<2];
int head[maxn], cnt = -1;
queue<int> q;
void add(int u, int v, int w)
{
e[++cnt].flow = w; e[cnt].next = head[u]; e[cnt].to = v; head[u] = cnt;
e[++cnt].flow = 0; e[cnt].next = head[v]; e[cnt].to = u; head[v] = cnt;
}
bool bfs(int s, int t)
{
memset(deep, 0x7f, sizeof(deep));
while(!q.empty()) q.pop();
q.push(s); deep[s] = 0;
while(!q.empty())
{
int now = q.front(); q.pop();
for(int i = head[now]; i != -1; i = e[i].next)
{
if(deep[e[i].to] > inf && e[i].flow)
{
deep[e[i].to] = deep[now] + 1;
q.push(e[i].to);
}
}
}
if(deep[t] < inf) return true;
else return false;
}
int dfs(int now, int t, int limit)
{
if(!limit || now == t) return limit;
int flow = 0, f;
for(int i = head[now]; i != -1; i = e[i].next)
{
if(deep[e[i].to] == deep[now] + 1 && (f = dfs(e[i].to, t, min(e[i].flow, limit))))
{
flow += f;
limit -= f;
e[i].flow -= f;
e[i^1].flow += f;
if(!limit) break;
}
}
return flow;
}
void Dinic(int s, int t)
{
while(bfs(s, t))
maxflow += dfs(s, t, inf);
}
int main()
{
memset(head, -1, sizeof(head));
scanf("%d%d",&m,&n);
s = 1, t = 2 + n + m;
for(int i = 1; i <= m; i++)
{
int u;
scanf("%d",&w[i]);
ans += w[i];
while(scanf("%d",&u) && u != 0)
{
add(i + n + 1, u + 1, inf);
}
}
for(int i = 1; i <= n; i++)
{
int c;
scanf("%d",&c);
add(i + 1, t, c);
}
for(int i = 1; i <= m; i++)
{
add(s, i + n + 1, w[i]);
}
Dinic(s, t);
printf("%d",ans - maxflow);
return 0;
}

【luogu P3410 拍照】 题解的更多相关文章

  1. 洛谷 P2762 太空飞行计划问题 P3410 拍照【最大权闭合子图】题解+代码

    洛谷 P2762 太空飞行计划问题 P3410 拍照[最大权闭合子图]题解+代码 最大权闭合子图 定义: 如果对于一个点集合,其中任何一个点都不能到达此集合以外的点,这就叫做闭合子图.每个点都有一个权 ...

  2. 洛谷 P3410 拍照

    洛谷 P3410 拍照 题目描述 小B有n个下属,现小B要带着一些下属让别人拍照. 有m个人,每个人都愿意付给小B一定钱让n个人中的一些人进行合影.如果这一些人没带齐那么就不能拍照,小B也不会得到钱. ...

  3. 【洛谷P3410】拍照题解(最大权闭合子图总结)

    题目描述 小B有n个下属,现小B要带着一些下属让别人拍照. 有m个人,每个人都愿意付给小B一定钱让n个人中的一些人进行合影.如果这一些人没带齐那么就不能拍照,小B也不会得到钱. 注意:带下属不是白带的 ...

  4. P3410 拍照

    漂亮小姐姐点击就送:https://www.luogu.org/problemnew/show/P3410 题目描述 小B有n个下属,现小B要带着一些下属让别人拍照. 有m个人,每个人都愿意付给小B一 ...

  5. 【luogu P3946 ことりのおやつ】 题解

    题目链接:https://www.luogu.org/problemnew/show/P3946 交好几遍是因为虽然能过一直有提醒..强迫症qwq #include <bits/stdc++.h ...

  6. Luogu P2210 Haywire 题解

    其实这题吧...有一种玄学解法 这题的要求的就是一个最小化的顺序 那么,我们就不进想到了一种显然的写法 就是random_shuffle 什么?这不是乱搞的非正解吗 然而,正如一句话说的好 一个算法, ...

  7. [Luogu P4178]Tree 题解(点分治+平衡树)

    题目大意 给定一棵树,边带权,问有多少点对满足二者间距离$\leq K$,$n \leq 40000$. 题解 点分治专题首杀!$Jackpot!$ (本来看着题意比较简单想捡个软柿子捏,结果手断了… ...

  8. [火星补锅] 水题大战Vol.2 T1 && luogu P1904 天际线 题解 (线段树)

    前言: 当时考场上并没有想出来...后来也是看了题解才明白 解析: 大家(除了我)都知道,奇点和偶点会成对出现,而出现的前提就是建筑的高度突然发生变化.(这个性质挺重要的,我之前没看出来) 所以就可以 ...

  9. Luogu P2158 仪仗队 题解报告

    题目传送门 [题目大意] 给定一个n×n的点方阵,求站在左下角的点能看到的点数 注意同一条直线上只能看到一个点 [思路分析] 因为是一个方阵,所以可以对称地算,那么对于半个方阵,这里假设是左上的半个方 ...

随机推荐

  1. cloudermanger安装时需要安装或彻底正确卸载再安装orcal-java7-installer、oracle-java7-set-default(ubuntu14.04版本)(图文详解)

    不多说,直接上干货! 安装orcal-java7-installer和oracle-java7-set-default 安装JDK1.7 (所有节点)CDH要求至少是Oracle JDK7,Ubunt ...

  2. elasticsearch 2.4.0执行update的时候发现的一个问题

    请关注inline参数的变化 正确: POST /test/type1/1/_update{ "script" : { "inline": "ctx. ...

  3. 代码重构----使用java有限状态机来消除太多的if else判断

    1. 状态机基本概念 http://zh.wikipedia.org/wiki/%E6%9C%89%E9%99%90%E7%8A%B6%E6%80%81%E6%9C%BA 状态存储关于过去的信息,就是 ...

  4. (一)安装Python

    一.安装python 打开 Python官网,找到“Download”, 在其下拉菜单中选择自己的平台(Windows/Mac),一般的Linux平台已经自带的Python,所以不需要安装,通过打开“ ...

  5. C#博客记录一

    前言:C#语言是由微软公司开发面向大众的一款软件开发语言. 1.c语音的输出语句为Console.Write();和Console.WriteLine(); 两者区别为后者为换行输出,前者不换行. 2 ...

  6. CheckBox 样式

    .cb td {             width: 100px;         } .cb label {             display: inline-block;          ...

  7. WPF的依赖项属性

    WPF的依赖项属性 属性与事件是.NET抽象模型的核心部分.WPF使用了更高级的依赖项属性(Dependency Property)功能来替换原来.NET的属性,实现了更高效率的保存机制,还添加了附加 ...

  8. Json/Xml简介和处理模型

    JSON json简介 JSON是一种基于文本的数据交换格式,源自JavaScript,用于Web服务和其他连接的应用程序.以下部分介绍了JSON语法,JSON使用概述以及生成和解析JSON的最常用方 ...

  9. hibernate事务管理 (jdbc jta)

    hibernate的两种事务管理jdbc 和jta方式.下边说说两者的区别一.说明一下jdbc和jta方式事务管理的区别:JDBC事务由Connnection管理,也就是说,事务管理实际上是在JDBC ...

  10. Spring课程 Spring入门篇 4-9 Spring bean装配之对jsr支持的说明

    1 解析 1.1 疑问:2.2去掉@resource注解,为什么不能赋值?不是有set方法了吗? 1.2 @resource注解版本支持 1.3 没有显式指定@resource的那么,默认名称从何获得 ...