BZOJ3295: [Cqoi2011]动态逆序对 莫队
这个用莫队做会被卡,但是我还是......
收获在于树状数组维护后缀和以及双维排序......
莫队的时间复杂度比想象中的要好一些....
然而我还是被卡了......
#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstring>
#include<algorithm>
#define MAXN 100005
using namespace std;
int pos[MAXN],len,a[MAXN],front[MAXN],back[MAXN],n,m,t[MAXN],p,now,b[MAXN],live[MAXN];
struct Q
{
int pos,time,ans;
}q[MAXN];
int comp(const Q x,const Q y)
{
return pos[x.pos]<pos[y.pos]||(pos[x.pos]==pos[y.pos]&&x.time<y.time);
}
int end_comp(const Q x,const Q y)
{
return x.time<y.time;
}
inline int lowbit(int x)
{
return x&(-x);
}
inline void update_front(int x,int i)
{
if(x==)return;
while(x>)
{
front[x]+=i;
x-=lowbit(x);
}
}
inline void update_back(int x,int i)
{
if(x==)return;
while(x<=n)
{
back[x]+=i;
x+=lowbit(x);
}
}
inline int sum_front(int x)
{
int ret=;
while(x<=n)
{
ret+=front[x];
x+=lowbit(x);
}
return ret;
}
inline int sum_back(int x)
{
int ret=;
while(x>)
{
ret+=back[x];
x-=lowbit(x);
}
return ret;
}
long long ans;
void pre()
{
scanf("%d%d",&n,&m);
len=(int)(sqrt(n+0.5));
for(int i=;i<=n;i++)
{
scanf("%d",&a[i]);
live[a[i]]=i;
pos[i]=(i-)/len+;
}
for(int i=n;i>;i--)
{
ans+=sum_back(a[i]-);
update_back(a[i],);
}
update_back(a[],-);
p=;
now=;
for(int i=;i<=m;i++)
{
scanf("%d",&b[i]);
q[i].pos=live[b[i]];
q[i].time=i;
}
sort(q+,q+m+,comp);
}
inline void via(int pl,int i)
{
a[live[pl]]=(i==)?pl:;
if(live[pl]<p)update_front(pl,i);
if(live[pl]>p)update_back(pl,i);
}
inline void do_front(int pl)
{
update_front(a[pl],);
update_back(a[pl+],-);
}
inline void do_back(int pl)
{
update_back(a[pl],);
update_front(a[pl-],-);
}
void work()
{
for(int i=;i<=m;i++)
{
while(now<q[i].time)via(b[now++],-);
while(now>q[i].time)via(b[--now],);
while(p<q[i].pos)do_front(p++);
while(p>q[i].pos)do_back(p--);
q[i].ans=sum_front(a[q[i].pos]+)+sum_back(a[q[i].pos]-);
}
}
void print()
{
sort(q+,q+m+,end_comp);
for(int i=;i<=m;i++)
{
printf("%lld\n",ans);
ans-=q[i].ans;
}
}
int main()
{
//freopen("inverse.in","r",stdin);
//freopen("inverse.out","w",stdout);
pre();
work();
print();
return ;
}
BZOJ3295: [Cqoi2011]动态逆序对 莫队的更多相关文章
- bzoj3295 [Cqoi2011]动态逆序对 cdq+树状数组
[bzoj3295][Cqoi2011]动态逆序对 2014年6月17日4,7954 Description 对于序列A,它的逆序对数定义为满足i<j,且Ai>Aj的数对(i,j)的个数. ...
- bzoj3295[Cqoi2011]动态逆序对 树套树
3295: [Cqoi2011]动态逆序对 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 5987 Solved: 2080[Submit][Sta ...
- 2018.07.01 BZOJ3295: [Cqoi2011]动态逆序对(带修主席树)
3295: [Cqoi2011]动态逆序对 **Time Limit: 10 Sec Memory Limit: 128 MB Description 对于序列A,它的逆序对数定义为满足i<j& ...
- [BZOJ3295][Cqoi2011]动态逆序对 CDQ分治&树套树
3295: [Cqoi2011]动态逆序对 Time Limit: 10 Sec Memory Limit: 128 MB Description 对于序列A,它的逆序对数定义为满足i<j,且 ...
- bzoj千题计划146:bzoj3295: [Cqoi2011]动态逆序对
http://www.lydsy.com/JudgeOnline/problem.php?id=3295 正着删除看做倒着添加 对答案有贡献的数对满足以下3个条件: 出现时间:i<=j 权值大小 ...
- BZOJ3295: [Cqoi2011]动态逆序对(树状数组套主席树)
3295: [Cqoi2011]动态逆序对 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 7465 Solved: 2662[Submit][Sta ...
- BZOJ3295 [Cqoi2011]动态逆序对 —— CDQ分治
题目链接:https://vjudge.net/problem/HYSBZ-3295 3295: [Cqoi2011]动态逆序对 Time Limit: 10 Sec Memory Limit: 1 ...
- bzoj3295: [Cqoi2011]动态逆序对(cdq分治+树状数组)
3295: [Cqoi2011]动态逆序对 题目:传送门 题解: 刚学完cdq分治,想起来之前有一道是树套树的题目可以用cdq分治来做...尝试一波 还是太弱了...想到了要做两次cdq...然后伏地 ...
- [bzoj3295][Cqoi2011]动态逆序对_主席树
动态逆序对 bzoj-3295 Cqoi-2011 题目大意:题目链接. 注释:略. 想法:直接建立主席树. 由于是一个一个删除,所以我们先拿建立好的root[n]的权值线段树先把总逆序对求出来,接着 ...
随机推荐
- 让UltraEdit-32成为Delphi 7编译器的工具设置
UltraEdit-32编译Delphi的工具设置 {================================================}Dcc32 命令行(&C):C:\Pro ...
- ELK 安装部署实战 (最新6.4.0版本)
一.实战背景 根据公司平台的发展速度,对于ELK日志分析日益迫切.主要的需求有: 1.用户行为分析 2.运营活动点击率分析 作为上述2点需求,安装最新版本6.4.0是非常有必要的,大家可根据本人之前博 ...
- py3.7.1下pyinstaller 的安装及打包 坑
实在无语了,写了个小程序,用pyinstaller打包,运行就出现这个pip install pywin32-ctypes.明明全部都已经安装了啊. 解决办法: 不要在工程设置里安装pyinstall ...
- 网站mysql防止sql注入攻击 3种方法总结
mysql数据库一直以来都遭受到sql注入攻击的影响,很多网站,包括目前的PC端以及手机端都在使用php+mysql数据库这种架构,大多数网站受到的攻击都是与sql注入攻击有关,那么mysql数据库如 ...
- Java学习笔记十:Java的数组以及操作数组
Java的数组以及操作数组 一:什么是数组: 数组可以理解为是一个巨大的“盒子”,里面可以按顺序存放多个类型相同的数据,比如可以定义 int 型的数组 scores 存储 4 名学生的成绩 数组中的元 ...
- MSSQL如何查看当前数据库的连接数 【转】
- [SQL Server]版权声明:转载时请以超链接形式标明文章原始出处和作者信息及本声明 http://ai51av.blogbus.com/logs/52955622.html 如果我们发布 ...
- Union-find 并查集
解决问题 给一系列对点0~N-1的连接,判断某两个点p与q是否相连. private int[] id; // 判断p和q是否属于同一个连通分量 public boolean connected(in ...
- 【Consul】Consul架构-Consensus协议
Consul使用Consensus协议提供一致性(Consistency)--CAP定义的一致性.Consensus协议是基于"Raft:In search of an Understand ...
- elasticsearch-mathc和term的区分
elasticsearch和mysql在思想上是有不同的,elasticsearch有分词一说,比如北京奥运分词成北京,奥运,北京奥运.分词要要考虑两点,一个是查询字符串要不要分词,还有就是原存储字段 ...
- 【jQuery】 常用函数
[jQuery] 常用函数 html() : 获取设置元素内的 html,包含标签 text() : 获取设置元素内的文本, 不包含标签 val() : 获取设置 value 值 attr() : 获 ...