1、问题描述:

爬取链家深圳全部二手房的详细信息,并将爬取的数据存储到CSV文件中

2、思路分析:

(1)目标网址:https://sz.lianjia.com/ershoufang/

(2)代码结构:

class LianjiaSpider(object):

    def __init__(self):

    def getMaxPage(self, url): # 获取maxPage

    def parsePage(self, url): # 解析每个page,获取每个huose的Link

    def parseDetail(self, url): # 根据Link,获取每个house的详细信息

(3) init(self)初始化函数

· hearders用到了fake_useragent库,用来随机生成请求头。

· datas空列表,用于保存爬取的数据。

def __init__(self):
self.headers = {"User-Agent": UserAgent().random}
self.datas = list()

(4) getMaxPage()函数

主要用来获取二手房页面的最大页数.

def getMaxPage(self, url):
response = requests.get(url, headers = self.headers)
if response.status_code == 200:
source = response.text
soup = BeautifulSoup(source, "html.parser")
pageData = soup.find("div", class_ = "page-box house-lst-page-box")["page-data"]
# pageData = '{"totalPage":100,"curPage":1}',通过eval()函数把字符串转换为字典
maxPage = eval(pageData)["totalPage"]
return maxPage
else:
print("Fail status: {}".format(response.status_code))
return None

(5)parsePage()函数

主要是用来进行翻页的操作,得到每一页的所有二手房的Links链接。它通过利用一个for循环来重构 url实现翻页操作,而循环最大页数就是通过上面的 getMaxPage() 来获取到。

def parsePage(self, url):
maxPage = self.getMaxPage(url)
# 解析每个page,获取每个二手房的链接
for pageNum in range(1, maxPage+1 ):
url = "https://sz.lianjia.com/ershoufang/pg{}/".format(pageNum)
print("当前正在爬取: {}".format(url))
response = requests.get(url, headers = self.headers)
soup = BeautifulSoup(response.text, "html.parser")
links = soup.find_all("div", class_ = "info clear")
for i in links:
link = i.find("a")["href"] #每个<info clear>标签有很多<a>,而我们只需要第一个,所以用find
detail = self.parseDetail(link)
self.datas.append(detail)

(6)parseDetail()函数

根据parsePage()函数获取的二手房Link链接,向该链接发送请求,获取出详细页面信息。

def parseDetail(self, url):
response = requests.get(url, headers = self.headers)
detail = {}
if response.status_code == 200:
soup = BeautifulSoup(response.text, "html.parser")
detail["价格"] = soup.find("span", class_ = "total").text
detail["单价"] = soup.find("span", class_ = "unitPriceValue").text
detail["小区"] = soup.find("div", class_ = "communityName").find("a", class_ = "info").text
detail["位置"] = soup.find("div", class_="areaName").find("span", class_="info").text
detail["地铁"] = soup.find("div", class_="areaName").find("a", class_="supplement").text
base = soup.find("div", class_ = "base").find_all("li") # 基本信息
detail["户型"] = base[0].text[4:]
detail["面积"] = base[2].text[4:]
detail["朝向"] = base[6].text[4:]
detail["电梯"] = base[10].text[4:]
return detail
else:
return None

(7)将数据存储到CSV文件中

这里用到了 pandas 库的 DataFrame() 方法,它默认的是按照列名的字典顺序排序的。想要自定义列的顺序,可以加columns字段。

    #  将所有爬取的二手房数据存储到csv文件中
data = pd.DataFrame(self.datas)
# columns字段:自定义列的顺序(DataFrame默认按列名的字典序排序)
columns = ["小区", "户型", "面积", "价格", "单价", "朝向", "电梯", "位置", "地铁"]
data.to_csv(".\Lianjia_II.csv", encoding='utf_8_sig', index=False, columns=columns)

3、效果展示

4、完整代码:

# -* coding: utf-8 *-
#author: wangshx6
#data: 2018-11-07
#descriptinon: 爬取链家深圳全部二手房的详细信息,并将爬取的数据存储到CSV文 import requests
from bs4 import BeautifulSoup
import pandas as pd
from fake_useragent import UserAgent class LianjiaSpider(object): def __init__(self):
self.headers = {"User-Agent": UserAgent().random}
self.datas = list() def getMaxPage(self, url):
response = requests.get(url, headers = self.headers)
if response.status_code == 200:
source = response.text
soup = BeautifulSoup(source, "html.parser")
pageData = soup.find("div", class_ = "page-box house-lst-page-box")["page-data"]
# pageData = '{"totalPage":100,"curPage":1}',通过eval()函数把字符串转换为字典
maxPage = eval(pageData)["totalPage"]
return maxPage
else:
print("Fail status: {}".format(response.status_code))
return None def parsePage(self, url):
maxPage = self.getMaxPage(url)
# 解析每个page,获取每个二手房的链接
for pageNum in range(1, maxPage+1 ):
url = "https://sz.lianjia.com/ershoufang/pg{}/".format(pageNum)
print("当前正在爬取: {}".format(url))
response = requests.get(url, headers = self.headers)
soup = BeautifulSoup(response.text, "html.parser")
links = soup.find_all("div", class_ = "info clear")
for i in links:
link = i.find("a")["href"] #每个<info clear>标签有很多<a>,而我们只需要第一个,所以用find
detail = self.parseDetail(link)
self.datas.append(detail) # 将所有爬取的二手房数据存储到csv文件中
data = pd.DataFrame(self.datas)
# columns字段:自定义列的顺序(DataFrame默认按列名的字典序排序)
columns = ["小区", "户型", "面积", "价格", "单价", "朝向", "电梯", "位置", "地铁"]
data.to_csv(".\Lianjia_II.csv", encoding='utf_8_sig', index=False, columns=columns) def parseDetail(self, url):
response = requests.get(url, headers = self.headers)
detail = {}
if response.status_code == 200:
soup = BeautifulSoup(response.text, "html.parser")
detail["价格"] = soup.find("span", class_ = "total").text
detail["单价"] = soup.find("span", class_ = "unitPriceValue").text
detail["小区"] = soup.find("div", class_ = "communityName").find("a", class_ = "info").text
detail["位置"] = soup.find("div", class_="areaName").find("span", class_="info").text
detail["地铁"] = soup.find("div", class_="areaName").find("a", class_="supplement").text
base = soup.find("div", class_ = "base").find_all("li") # 基本信息
detail["户型"] = base[0].text[4:]
detail["面积"] = base[2].text[4:]
detail["朝向"] = base[6].text[4:]
detail["电梯"] = base[10].text[4:]
return detail
else:
return None if __name__ == "__main__":
Lianjia = LianjiaSpider()
Lianjia.parsePage("https://sz.lianjia.com/ershoufang/")

python爬虫:爬取链家深圳全部二手房的详细信息的更多相关文章

  1. python爬虫:利用BeautifulSoup爬取链家深圳二手房首页的详细信息

    1.问题描述: 爬取链家深圳二手房的详细信息,并将爬取的数据存储到Excel表 2.思路分析: 发送请求--获取数据--解析数据--存储数据 1.目标网址:https://sz.lianjia.com ...

  2. Python——Scrapy爬取链家网站所有房源信息

    用scrapy爬取链家全国以上房源分类的信息: 路径: items.py # -*- coding: utf-8 -*- # Define here the models for your scrap ...

  3. Python爬虫项目--爬取链家热门城市新房

    本次实战是利用爬虫爬取链家的新房(声明: 内容仅用于学习交流, 请勿用作商业用途) 环境 win8, python 3.7, pycharm 正文 1. 目标网站分析 通过分析, 找出相关url, 确 ...

  4. Python的scrapy之爬取链家网房价信息并保存到本地

    因为有在北京租房的打算,于是上网浏览了一下链家网站的房价,想将他们爬取下来,并保存到本地. 先看链家网的源码..房价信息 都保存在 ul 下的li 里面 ​ 爬虫结构: ​ 其中封装了一个数据库处理模 ...

  5. 【nodejs 爬虫】使用 puppeteer 爬取链家房价信息

    使用 puppeteer 爬取链家房价信息 目录 使用 puppeteer 爬取链家房价信息 页面结构 爬虫库 pupeteer 库 实现 打开待爬页面 遍历区级页面 方法一 方法二 遍历街道页面 遍 ...

  6. Python爬取链家二手房源信息

    爬取链家网站二手房房源信息,第一次做,仅供参考,要用scrapy.   import scrapy,pypinyin,requests import bs4 from ..items import L ...

  7. Python爬虫 - 爬取百度html代码前200行

    Python爬虫 - 爬取百度html代码前200行 - 改进版,  增加了对字符串的.strip()处理 源代码如下: # 改进版, 增加了 .strip()方法的使用 # coding=utf-8 ...

  8. Scrapy实战篇(一)之爬取链家网成交房源数据(上)

    今天,我们就以链家网南京地区为例,来学习爬取链家网的成交房源数据. 这里推荐使用火狐浏览器,并且安装firebug和firepath两款插件,你会发现,这两款插件会给我们后续的数据提取带来很大的方便. ...

  9. 用Python爬虫爬取广州大学教务系统的成绩(内网访问)

    用Python爬虫爬取广州大学教务系统的成绩(内网访问) 在进行爬取前,首先要了解: 1.什么是CSS选择器? 每一条css样式定义由两部分组成,形式如下: [code] 选择器{样式} [/code ...

随机推荐

  1. jmeter中CSV Data Set Config各项说明

    Config the CSV Data Source: 1)Filename:csv文件的名称(包括绝对路径,当csv文件在bin目录下时,只需给出文件名即可) 2)File encoding:csv ...

  2. STC12C5A60S2 51单片机最小系统

                                                                                    STC12C5A60S2 一.根据芯片文 ...

  3. php多进程写入文件

    测试一 $begin = time(); for ($i=0; $i<10000; $i++) { $fp = fopen("tmp", 'r+'); fseek($fp, ...

  4. Hibernate 基于外键映射的一对一关联关系随手记

    //有外键的一端默认使用懒加载. //没有外键的一端不使用懒加载,而是直接将它引用的对象也一并查询出来. //没有外键列不仅有外键约束还有唯一约束,即没有外键列一端的对象不能被有外键列一端的两个对象同 ...

  5. 表达式过滤器 uppercase

    <!DOCTYPE html><html><head><meta http-equiv="Content-Type" content=&q ...

  6. Spring技术内幕阅读笔记(一)

    1.BeanFactory:实现ioc容器的最基本形式.String FACTORY_BEAN_PREFIX = "&";Object getBean(String var ...

  7. Excel 批量重命名照片

    理历史照片的时候发现,用文件夹进行分类之后,还有很多照片,如果继续分类,就会导致每个文件夹照片过少,查看不便,但是如果不分类,手机原始的命名方式没有办法满足查看需求,故而,产生了对照片进行批量重命名的 ...

  8. c# 调用服务返回结果模板化

    一般我们返回一个结果,主要有返回值,执行结果信息,所以定义一个类 public  class QuestResult    { /// <summary>        /// 返回值  ...

  9. 打造开源GIS方案

    现在GIS用途较多,最近要有所接触,所以决定自己打造一个已经又的方案.均以Java作为开发 二位地图:客户端:geotools,swing,geoserver; web:openlayer,geose ...

  10. 浅谈箭头函数和setTimeout中的this

    箭头函数会改变this的指向,这个大家看文档都看到过,可是有没有具体理解呢?我发现自己应该可能大概是......emmmm,然后我整理了一遍,加强一下概念吧顺带再讲一下setTimeout这个函数改写 ...