Python分布式爬虫打造搜索引擎Scrapy精讲—将bloomfilter(布隆过滤器)集成到scrapy-redis中,判断URL是否重复

布隆过滤器(Bloom Filter)详解

基本概念

如果想判断一个元素是不是在一个集合里,一般想到的是将所有元素保存起来,然后通过比较确定。链表,树等等数据结构都是这种思路. 但是随着集合中元素的增加,我们需要的存储空间越来越大,检索速度也越来越慢。不过世界上还有一种叫作散列表(又叫哈希表,Hash table)的数据结构。它可以通过一个Hash函数将一个元素映射成一个位阵列(Bit Array)中的一个点。这样一来,我们只要看看这个点是不是 1 就知道可以集合中有没有它了。这就是布隆过滤器的基本思想。

Hash面临的问题就是冲突。假设 Hash 函数是良好的,如果我们的位阵列长度为 m 个点,那么如果我们想将冲突率降低到例如 1%, 这个散列表就只能容纳 m/100 个元素。显然这就不叫空间有效了(Space-efficient)。解决方法也简单,就是使用多个 Hash,如果它们有一个说元素不在集合中,那肯定就不在。如果它们都说在,虽然也有一定可能性它们在说谎,不过直觉上判断这种事情的概率是比较低的。

优点

相比于其它的数据结构,布隆过滤器在空间和时间方面都有巨大的优势。布隆过滤器存储空间和插入/查询时间都是常数。另外, Hash 函数相互之间没有关系,方便由硬件并行实现。布隆过滤器不需要存储元素本身,在某些对保密要求非常严格的场合有优势。

布隆过滤器可以表示全集,其它任何数据结构都不能;

k 和 m 相同,使用同一组 Hash 函数的两个布隆过滤器的交并差运算可以使用位操作进行。

缺点

但是布隆过滤器的缺点和优点一样明显。误算率(False Positive)是其中之一。随着存入的元素数量增加,误算率随之增加。但是如果元素数量太少,则使用散列表足矣。

另外,一般情况下不能从布隆过滤器中删除元素. 我们很容易想到把位列阵变成整数数组,每插入一个元素相应的计数器加1, 这样删除元素时将计数器减掉就可以了。然而要保证安全的删除元素并非如此简单。首先我们必须保证删除的元素的确在布隆过滤器里面. 这一点单凭这个过滤器是无法保证的。另外计数器回绕也会造成问题。

python 基于redis实现的bloomfilter(布隆过滤器),BloomFilter_imooc

BloomFilter_imooc下载

下载地址:https://github.com/liyaopinner/BloomFilter_imooc

依赖关系: 

  python 基于redis实现的bloomfilter

  依赖mmh3

  安装依赖包:

  pip install mmh3

1、安装好BloomFilter_imooc所需要的依赖

2、将下载的BloomFilter_imooc包解压后,将里面的py_bloomfilter.py文件复制到scrapy工程目录

py_bloomfilter.py(布隆过滤器)源码

import mmh3
import redis
import math
import time class PyBloomFilter():
#内置100个随机种子
SEEDS = [543, 460, 171, 876, 796, 607, 650, 81, 837, 545, 591, 946, 846, 521, 913, 636, 878, 735, 414, 372,
344, 324, 223, 180, 327, 891, 798, 933, 493, 293, 836, 10, 6, 544, 924, 849, 438, 41, 862, 648, 338,
465, 562, 693, 979, 52, 763, 103, 387, 374, 349, 94, 384, 680, 574, 480, 307, 580, 71, 535, 300, 53,
481, 519, 644, 219, 686, 236, 424, 326, 244, 212, 909, 202, 951, 56, 812, 901, 926, 250, 507, 739, 371,
63, 584, 154, 7, 284, 617, 332, 472, 140, 605, 262, 355, 526, 647, 923, 199, 518] #capacity是预先估计要去重的数量
#error_rate表示错误率
#conn表示redis的连接客户端
#key表示在redis中的键的名字前缀
def __init__(self, capacity=1000000000, error_rate=0.00000001, conn=None, key='BloomFilter'):
self.m = math.ceil(capacity*math.log2(math.e)*math.log2(1/error_rate)) #需要的总bit位数
self.k = math.ceil(math.log1p(2)*self.m/capacity) #需要最少的hash次数
self.mem = math.ceil(self.m/8/1024/1024) #需要的多少M内存
self.blocknum = math.ceil(self.mem/512) #需要多少个512M的内存块,value的第一个字符必须是ascii码,所有最多有256个内存块
self.seeds = self.SEEDS[0:self.k]
self.key = key
self.N = 2**31-1
self.redis = conn
# print(self.mem)
# print(self.k) def add(self, value):
name = self.key + "_" + str(ord(value[0])%self.blocknum)
hashs = self.get_hashs(value)
for hash in hashs:
self.redis.setbit(name, hash, 1) def is_exist(self, value):
name = self.key + "_" + str(ord(value[0])%self.blocknum)
hashs = self.get_hashs(value)
exist = True
for hash in hashs:
exist = exist & self.redis.getbit(name, hash)
return exist def get_hashs(self, value):
hashs = list()
for seed in self.seeds:
hash = mmh3.hash(value, seed)
if hash >= 0:
hashs.append(hash)
else:
hashs.append(self.N - hash)
return hashs pool = redis.ConnectionPool(host='127.0.0.1', port=6379, db=0)
conn = redis.StrictRedis(connection_pool=pool) # 使用方法
# if __name__ == "__main__":
# bf = PyBloomFilter(conn=conn) # 利用连接池连接Redis
# bf.add('www.jobbole.com') # 向Redis默认的通道添加一个域名
# bf.add('www.luyin.org') # 向Redis默认的通道添加一个域名
# print(bf.is_exist('www.zhihu.com')) # 打印此域名在通道里是否存在,存在返回1,不存在返回0
# print(bf.is_exist('www.luyin.org')) # 打印此域名在通道里是否存在,存在返回1,不存在返回0

py_bloomfilter.py(布隆过滤器)集成到scrapy-redis中的dupefilter.py去重器中,使其抓取过的URL不添加到下载器,没抓取过的URL添加到下载器

scrapy-redis中的dupefilter.py去重器修改

import logging
import time from scrapy.dupefilters import BaseDupeFilter
from scrapy.utils.request import request_fingerprint from . import defaults
from .connection import get_redis_from_settings
from bloomfilter.py_bloomfilter import conn,PyBloomFilter #导入布隆过滤器 logger = logging.getLogger(__name__) # TODO: Rename class to RedisDupeFilter.
class RFPDupeFilter(BaseDupeFilter):
"""Redis-based request duplicates filter. This class can also be used with default Scrapy's scheduler. """ logger = logger def __init__(self, server, key, debug=False):
"""Initialize the duplicates filter. Parameters
----------
server : redis.StrictRedis
The redis server instance.
key : str
Redis key Where to store fingerprints.
debug : bool, optional
Whether to log filtered requests. """
self.server = server
self.key = key
self.debug = debug
self.logdupes = True # 集成布隆过滤器
self.bf = PyBloomFilter(conn=conn, key=key) # 利用连接池连接Redis @classmethod
def from_settings(cls, settings):
"""Returns an instance from given settings. This uses by default the key ``dupefilter:<timestamp>``. When using the
``scrapy_redis.scheduler.Scheduler`` class, this method is not used as
it needs to pass the spider name in the key. Parameters
----------
settings : scrapy.settings.Settings Returns
-------
RFPDupeFilter
A RFPDupeFilter instance. """
server = get_redis_from_settings(settings)
# XXX: This creates one-time key. needed to support to use this
# class as standalone dupefilter with scrapy's default scheduler
# if scrapy passes spider on open() method this wouldn't be needed
# TODO: Use SCRAPY_JOB env as default and fallback to timestamp.
key = defaults.DUPEFILTER_KEY % {'timestamp': int(time.time())}
debug = settings.getbool('DUPEFILTER_DEBUG')
return cls(server, key=key, debug=debug) @classmethod
def from_crawler(cls, crawler):
"""Returns instance from crawler. Parameters
----------
crawler : scrapy.crawler.Crawler Returns
-------
RFPDupeFilter
Instance of RFPDupeFilter. """
return cls.from_settings(crawler.settings) def request_seen(self, request):
"""Returns True if request was already seen. Parameters
----------
request : scrapy.http.Request Returns
-------
bool """
fp = self.request_fingerprint(request) # 集成布隆过滤器
if self.bf.is_exist(fp): # 判断如果域名在Redis里存在
return True
else:
self.bf.add(fp) # 如果不存在,将域名添加到Redis
return False # This returns the number of values added, zero if already exists.
# added = self.server.sadd(self.key, fp)
# return added == 0 def request_fingerprint(self, request):
"""Returns a fingerprint for a given request. Parameters
----------
request : scrapy.http.Request Returns
-------
str """
return request_fingerprint(request) def close(self, reason=''):
"""Delete data on close. Called by Scrapy's scheduler. Parameters
----------
reason : str, optional """
self.clear() def clear(self):
"""Clears fingerprints data."""
self.server.delete(self.key) def log(self, request, spider):
"""Logs given request. Parameters
----------
request : scrapy.http.Request
spider : scrapy.spiders.Spider """
if self.debug:
msg = "Filtered duplicate request: %(request)s"
self.logger.debug(msg, {'request': request}, extra={'spider': spider})
elif self.logdupes:
msg = ("Filtered duplicate request %(request)s"
" - no more duplicates will be shown"
" (see DUPEFILTER_DEBUG to show all duplicates)")
self.logger.debug(msg, {'request': request}, extra={'spider': spider})
self.logdupes = False

爬虫文件

#!/usr/bin/env python
# -*- coding:utf8 -*- from scrapy_redis.spiders import RedisCrawlSpider # 导入scrapy_redis里的RedisCrawlSpider类
import scrapy
from scrapy.linkextractors import LinkExtractor
from scrapy.spiders import Rule class jobboleSpider(RedisCrawlSpider): # 自定义爬虫类,继承RedisSpider类
name = 'jobbole' # 设置爬虫名称
allowed_domains = ['www.luyin.org'] # 爬取域名
redis_key = 'jobbole:start_urls' # 向redis设置一个名称储存url rules = (
# 配置抓取列表页规则
# Rule(LinkExtractor(allow=('ggwa/.*')), follow=True), # 配置抓取内容页规则
Rule(LinkExtractor(allow=('.*')), callback='parse_job', follow=True),
) def parse_job(self, response): # 回调函数,注意:因为CrawlS模板的源码创建了parse回调函数,所以切记我们不能创建parse名称的函数
# 利用ItemLoader类,加载items容器类填充数据
neir = response.css('title::text').extract()
print(neir)

启动爬虫 scrapy crawl jobbole

cd 到redis安装目录执行命令:redis-cli -h 127.0.0.1 -p 6379  连接redis客户端

连接redis客户端后执行命令:lpush jobbole:start_urls http://www.luyin.org  向redis添加一个爬虫起始url

开始爬取

redis状态说明:

将bloomfilter(布隆过滤器)集成到scrapy-redis中的更多相关文章

  1. 第三百五十八节,Python分布式爬虫打造搜索引擎Scrapy精讲—将bloomfilter(布隆过滤器)集成到scrapy-redis中

    第三百五十八节,Python分布式爬虫打造搜索引擎Scrapy精讲—将bloomfilter(布隆过滤器)集成到scrapy-redis中,判断URL是否重复 布隆过滤器(Bloom Filter)详 ...

  2. 三十七 Python分布式爬虫打造搜索引擎Scrapy精讲—将bloomfilter(布隆过滤器)集成到scrapy-redis中

    Python分布式爬虫打造搜索引擎Scrapy精讲—将bloomfilter(布隆过滤器)集成到scrapy-redis中,判断URL是否重复 布隆过滤器(Bloom Filter)详解 基本概念 如 ...

  3. BloomFilter布隆过滤器

    BloomFilter 简介 当一个元素被加入集合时,通过K个散列函数将这个元素映射成一个位数组中的K个点,把它们置为1.检索时,我们只要看看这些点是不是都是1就(大约)知道集合中有没有它了:如果这些 ...

  4. 使用BloomFilter布隆过滤器解决缓存击穿、垃圾邮件识别、集合判重

    Bloom Filter是一个占用空间很小.效率很高的随机数据结构,它由一个bit数组和一组Hash算法构成.可用于判断一个元素是否在一个集合中,查询效率很高(1-N,最优能逼近于1). 在很多场景下 ...

  5. BloomFilter(布隆过滤器)

    原文链接:http://blog.csdn.net/qq_38646470/article/details/79431659 1.概念: 如果想判断一个元素是不是在一个集合里,一般想到的是将所有元素保 ...

  6. BloomFilter布隆过滤器使用

    从上一篇可以得知,BloomFilter的关键在于hash算法的设定和bit数组的大小确定,通过权衡得到一个错误概率可以接受的结果. 算法比较复杂,也不是我们研究的范畴,我们直接使用已有的实现. go ...

  7. 将selenium集成到scrapy框架中

    一 首先想到的是将selenium 写在下载中间件的process_request中.如以下代码. middleware.py from selenium import webdriver from ...

  8. SpringBoot(18)---通过Lua脚本批量插入数据到Redis布隆过滤器

    通过Lua脚本批量插入数据到布隆过滤器 有关布隆过滤器的原理之前写过一篇博客: 算法(3)---布隆过滤器原理 在实际开发过程中经常会做的一步操作,就是判断当前的key是否存在. 那这篇博客主要分为三 ...

  9. 白话布隆过滤器BloomFilter

    通过本文将了解到以下内容: 查找问题的一般思路 布隆过滤器的基本原理 布隆过滤器的典型应用 布隆过滤器的工程实现 场景说明: 本文阐述的场景均为普通单机服务器.并非分布式大数据平台,因为在大数据平台下 ...

随机推荐

  1. 修改 CentOS 6.3 时区 和 时间

    1.查看当前时区和时间 date -R 2.CentOS中时区是以文件形式存在,当前时区文件位于 /etc/localtime 其他时区文件位于 /usr/share/zoneinfo下,其中中国时区 ...

  2. oracle: 浅谈sqlnet.ora文件的作用,及SQLNET.AUTHENTICATION_SERVICES设置

    关于sqlnet.ora的说明: *****************************************************FROM ORACLE11G DOCS*********** ...

  3. Android 多线程之HandlerThread 完全详解

    关联文章: Android 多线程之HandlerThread 完全详解 Android 多线程之IntentService 完全详解 android多线程-AsyncTask之工作原理深入解析(上) ...

  4. CentOS release 6.6 (Final)如何安装firefox和chromium

    一.firefox的安装: 1. 安装remi源 rpm -Uvh http://download.fedoraproject.org/pub/epel/6/i386/epel-release-6-8 ...

  5. C#中的访问修饰符

    1. 简述 private. protected. public. internal 修饰符的访问权限.private : 私有成员, 在类的内部才可以访问.protected : 保护成员,该类内部 ...

  6. servlet虚拟路径映射

    在web.xml文件中,一个<servlet-mapping>元素用于映射一个Servlet的对外访问路径,该路径也称为虚拟路径.例如<url-pattern>/TestSer ...

  7. 马化腾从CFIDO到QQ(CFIDO BBS回忆录)

    微博上看到一个和马化腾貌似挺熟的人,聊起了和马化腾的交往,偶然间提到了这个CFIDO东西,搜索了一下,发现是远古的一个bbs.然后还看到一篇以网友的视角写的当时的一些回忆.我觉得挺好玩的,然后看到文章 ...

  8. easyUI表头样式

    easyUI表头样式 学习了:https://blog.csdn.net/lucasli2016/article/details/53606609 easyUI的样式定义在easyui.css中 表头 ...

  9. 恼人的The absolute uri: http://java.sun.com/jsp/jstl/core cannot be resolved...错误,无奈用Struts的bean:write替代了JSTL的C:out

    一个应用中有两个页面使用了JSTL的c:out输出,就类似这么简单三句 <c:if test="${!empty error}">       <h2>&l ...

  10. Charles 抓HTTPS包报以下错误:

    1.You may need to configure your browser or application to trust the Charles Root Certificate. See S ...