讲解教授:赵辉 (FROM : UESTC)

课程:《模式识别》

整理:PO主

基础知识:

假设空间中两点x,y,定义:

欧几里得距离,

Mahalanobis距离,

不难发现,如果去掉马氏距离中的协方差矩阵,就退化为欧氏距离。那么我们就需要探究这个多出来的因子究竟有什么含义。

第一个例子

从下往上的一段50米长的坡道路,下面定一个A点,上面定B一个点。假设有两种情况从A到B:

a)坐手扶电梯上去。

b)从手扶电梯旁边的楼梯爬上去。

两种情况下我们分别会产生两种不同的主观感受,坐电梯轻松愉快,感觉很快就从A到了B——“A与B真近~”;走楼梯爬的气喘吁吁很累,感觉走了好久才走到B——“A与B真远!”。

第二个例子

观看落日之时,由于大气的折射效应,太阳形状产生形变并且视觉位置也比真实位置高。

解释

以上两个例子看似和模式识别没有关系,实际上都引入了“相对论”的问题。回到问题本身,欧式距离就好比一个参照值,它表征的是当所有类别等概率出现的情况下,类别之间的距离。此时决策面中心点的位置就是两个类别中心的连线的中点。如图1所示。而当类别先验概率并不相等时,显然,如果仍然用中垂线作为决策线是不合理的,将出现判别错误(绿色类的点被判别为红色类),假设图1中绿色类别的先验概率变大,那么决策线将左移,如图2黄线。左移的具体位置,就是通过马氏距离来获得的。马氏距离中引入的协方差参数,表征的是点的稀密程度。

图1图2

从哲学上来说,用马氏距离处理数据时,不再把数据单纯的看作是冷冰冰的数字——那个引入的协方差,承认了客观上的差异性,就好像是有了人类的感情倾向,使得模式识别更加“人性化”也更加“视觉直观”。

Mahalanobis距离(马氏距离)的“哲学”解释的更多相关文章

  1. paper 114:Mahalanobis Distance(马氏距离)

    (from:http://en.wikipedia.org/wiki/Mahalanobis_distance) Mahalanobis distance In statistics, Mahalan ...

  2. Mahalanobis Distance(马氏距离)

    (from:http://en.wikipedia.org/wiki/Mahalanobis_distance) Mahalanobis distance In statistics, Mahalan ...

  3. 马氏距离(Mahalanobis distance)

    马氏距离(Mahalanobis distance)是由印度统计学家马哈拉诺比斯(P. C. Mahalanobis)提出的,表示数据的协方差距离.它是一种有效的计算两个未知样本集的相似度的方法.与欧 ...

  4. MATLAB求马氏距离(Mahalanobis distance)

    MATLAB求马氏距离(Mahalanobis distance) 作者:凯鲁嘎吉 - 博客园 http://www.cnblogs.com/kailugaji/ 1.马氏距离计算公式 d2(xi,  ...

  5. Mahalanobia Distance(马氏距离)的解释

    马氏距离有多重定义: 1)可以表示 某一个样本与DataSet的距离. 2)可以表示两个DataSet之间的距离. 1) The Mahalanobis distance of an observat ...

  6. 有关马氏距离和hinge loss的学习记录

    关于度量学习,之前没有看太多相关的文献.不过南京的周老师的一篇NIPS,确实把这个问题剖析得比较清楚. Mahalanobis距离一般表示为d=(x-y)TM(x-y),其中x和y是空间中两个样本点, ...

  7. 基于欧氏距离和马氏距离的异常点检测—matlab实现

    前几天接的一个小项目,基于欧氏距离和马氏距离的异常点检测,已经交接完毕,现在把代码公开. 基于欧式距离的: load data1.txt %导入数据,行为样本,列为特征 X=data1; %赋值给X ...

  8. Python实现的计算马氏距离算法示例

    Python实现的计算马氏距离算法示例 本文实例讲述了Python实现的计算马氏距离算法.分享给大家供大家参考,具体如下: 我给写成函数调用了 python实现马氏距离源代码:     # encod ...

  9. bzoj1193: [HNOI2006]马步距离

    1193: [HNOI2006]马步距离 Time Limit: 10 Sec  Memory Limit: 162 MB Description 在国际象棋和中国象棋中,马的移动规则相同,都是走&q ...

随机推荐

  1. Estimation And Gain

    Estimation: Almost every is spent on ergod the text and build the dictionary. Gains: I have never us ...

  2. Linux内核分析-两种方式使用同一个系统调用

    实验部分 根据系统调用表,选取一个系统调用.我选得是mkdir这个系统调用,其系统调用号为39,即0x27 由于mkdir函数的原型为 int mkdir (const char *filename, ...

  3. 《Linux内核》课本读书笔记 第三章

  4. Python爬虫:如何爬取分页数据?

    上一篇文章<Python爬虫:爬取人人都是产品经理的数据>中说了爬取单页数据的方法,这篇文章详细解释如何爬取多页数据. 爬取对象: 有融网理财项目列表页[履约中]状态下的前10页数据,地址 ...

  5. 解决sublime text3下中文无法输入的问题(Ubuntu)

    sublime-text-imfix,非常无脑.就喜欢这样的.

  6. BZOJ2435 NOI2011道路修建

    要多简单有多简单.然而不知道为啥在luogu上过不掉. #include<iostream> #include<cstdio> #include<cmath> #i ...

  7. Reachability from the Capital CodeForces - 999E(强连通分量 缩点 入度为0的点)

    题意: 问至少加几条边 能使点s可以到达所有的点 解析: 无向图的连通分量意义就是  在这个连通分量里 没两个点之间至少有一条可以相互到达的路径 所以 我们符合这种关系的点放在一起, 由s向这些点的任 ...

  8. Steady Cow Assignment POJ - 3189 (最大流+匹配)

    Farmer John's N (1 <= N <= 1000) cows each reside in one of B (1 <= B <= 20) barns which ...

  9. Spring中ClassPathXmlApplication与FileSystemXmlApplicationContext的区别以及ClassPathXmlApplicationContext 的具体路径

    一.ClassPathXmlApplicationContext 的具体路径 String s[] = System.getProperty("java.class.path"). ...

  10. 【刷题】BZOJ 2724 [Violet 6]蒲公英

    Description Input 修正一下 l = (l_0 + x - 1) mod n + 1, r = (r_0 + x - 1) mod n + 1 Output Sample Input ...