传送门

多项式求逆模板题。

简单讲讲?

多项式求逆

  • 定义:

    对于一个多项式A(x)A(x)A(x),如果存在一个多项式B(x)B(x)B(x),满足B(x)B(x)B(x)的次数小于等于A(x)A(x)A(x)且A(x)B(x)≡1mod  xnA(x)B(x)≡1 \mod x^nA(x)B(x)≡1modxn,那么我们称B(x)为A(x)A(x)A(x)在模xnx^nxn意义下的逆元,简单记作A−1(x)A^{−1}(x)A−1(x)
  • 求法:

    n=1?n=1?n=1?那不就是ccc的逆元么。

    n>1?n>1?n>1?我们令B(x)=A−1(x)B(x)=A^{-1}(x)B(x)=A−1(x)

    那么有A(x)B(x)≡1mod  xnA(x)B(x)\equiv 1 \mod x^nA(x)B(x)≡1modxn

    然后可以用类似倍增的方法求。

    假设我们已经知道C(x)C(x)C(x)满足A(x)C(x)≡1mod  xn2A(x)C(x)\equiv 1\mod x^{\frac n2}A(x)C(x)≡1modx2n​(这里的n2\frac n22n​都是向上取整)

    显然A(x)B(x)≡1mod  xn2A(x)B(x)\equiv 1\mod x^{\frac n2}A(x)B(x)≡1modx2n​是成立的。

    我们将两式相减:

    A(x)(B(x)−C(x))≡0mod  xn2A(x)(B(x)-C(x))\equiv 0\mod x^{\frac n2}A(x)(B(x)−C(x))≡0modx2n​

    所以B(x)−C(x)≡0mod  xn2B(x)-C(x)\equiv 0\mod x^{\frac n2}B(x)−C(x)≡0modx2n​

    然后将两边平方:

    B2(x)−2B(x)C(x)+C2(x)≡0mod  xn2B^2(x)-2B(x)C(x)+C^2(x)\equiv 0\mod x^{\frac n2}B2(x)−2B(x)C(x)+C2(x)≡0modx2n​

    =>B2(x)−2B(x)C(x)+C2(x)≡0mod  xnB^2(x)-2B(x)C(x)+C^2(x)\equiv 0\mod x^nB2(x)−2B(x)C(x)+C2(x)≡0modxn

    这一步很关键,请神犇们仔细思考原因

    然后两边同时乘上A(x)A(x)A(x)

    =>B(x)−2C(x)+A(x)C2(x)≡0mod  xn)B(x)-2C(x)+A(x)C^2(x)\equiv 0\mod x^n)B(x)−2C(x)+A(x)C2(x)≡0modxn)

    于是B(x)≡2C(x)−A(x)C2(x)mod  xnB(x)\equiv2C(x)-A(x)C^2(x)\mod x^nB(x)≡2C(x)−A(x)C2(x)modxn

乘法可以用fft/nttfft/nttfft/ntt加速,因为每次递归的时候多项式最高次项都减少一半,所以总复杂度仍然是O(nlogn)O(nlogn)O(nlogn)

代码:

#include<bits/stdc++.h>
#define ri register int
using namespace std;
inline int read(){
	int ans=0;
	char ch=getchar();
	while(!isdigit(ch))ch=getchar();
	while(isdigit(ch))ans=(ans<<3)+(ans<<1)+(ch^48),ch=getchar();
	return ans;
}
typedef long long ll;
const int mod=998244353;
int n;
inline int ksm(int a,int p){int ret=1;for(;p;p>>=1,a=(ll)a*a%mod)if(p&1)ret=(ll)ret*a%mod;return ret;}
inline int add(const int&a,const int&b){return a+b>=mod?a+b-mod:a+b;}
inline int dec(const int&a,const int&b){return a>=b?a-b:a-b+mod;}
inline int mul(const int&a,const int&b){return (ll)a*b%mod;}
int lim,tim;
vector<int>pos,A,B;
inline void init(const int&n){lim=1,tim=0;
	while(lim<=n)lim<<=1,++tim;
	pos.resize(lim),pos[0]=0;
	for(ri i=0;i<lim;++i)pos[i]=(pos[i>>1]>>1)|((i&1)<<(tim-1));
}
inline void ntt(vector<int>&a,int type){
	for(ri i=0;i<lim;++i)if(i<pos[i])swap(a[i],a[pos[i]]);
	for(ri mult=(mod-1)/2,mid=1,wn,typ=type==1?3:(mod+1)/3;mid<lim;mid<<=1,mult>>=1){
		wn=ksm(typ,mult);
		for(ri j=0,len=mid<<1,w;j<lim;j+=len){
			w=1;
			for(ri k=0,a0,a1;k<mid;w=mul(w,wn),++k){
				a0=a[j+k],a1=mul(w,a[j+k+mid]);
				a[j+k]=add(a0,a1),a[j+k+mid]=dec(a0,a1);
			}
		}
	}
	if(type==-1)for(ri i=0,inv=ksm(lim,mod-2);i<lim;++i)a[i]=mul(a[i],inv);
}
struct poly{
	vector<int>a;
	poly(const int&n,int x=0){a.resize(n+1),a[n]=x;}
	inline int&operator[](const int&i){return a[i];}
	inline const int&operator[](const int&i)const{return a[i];}
	inline poly extend(const int&x){poly ret=*this;return ret.a.resize(x),ret;}
	inline int deg()const{return a.size()-1;}
	friend inline poly operator+(const poly&a,const poly&b){
		poly c(max(a.deg(),b.deg()));
		for(ri i=0;i<=a.deg();++i)c[i]=add(c[i],a[i]);
		for(ri i=0;i<=b.deg();++i)c[i]=add(c[i],b[i]);
		return c;
	}
	friend inline poly operator-(const poly&a,const poly&b){
		poly c(max(a.deg(),b.deg()));
		for(ri i=0;i<=a.deg();++i)c[i]=add(c[i],a[i]);
		for(ri i=0;i<=b.deg();++i)c[i]=dec(c[i],b[i]);
		return c;
	}
	friend inline poly operator*(const poly&a,const int&b){
			poly c=a;
			for(ri i=0;i<=c.deg();++i)c[i]=mul(b,c[i]);
			return c;
	}
	friend inline poly operator *(const poly&a,const poly&b){
		int n=a.deg(),m=b.deg();
		init(n+m),A.resize(lim),B.resize(lim);
		poly ret(lim-1);
		for(ri i=0;i<=n;++i)A[i]=a[i];
		for(ri i=0;i<=m;++i)B[i]=b[i];
		for(ri i=n+1;i<lim;++i)A[i]=0;
		for(ri i=m+1;i<lim;++i)B[i]=0;
		ntt(A,1),ntt(B,1);
		for(ri i=0;i<lim;++i)A[i]=mul(A[i],B[i]);
		return ntt(A,-1),ret.a=A,ret;
	}
	inline poly poly_inv(poly A,const int k){
		if(k==1)return poly(0,ksm(A[0],mod-2));
		poly f0=poly_inv(A.extend((k+1)>>1),(k+1)>>1);
		return (f0*2-(A*((f0*f0).extend(k))).extend(k)).extend(k);
	}
};
int main(){
	freopen("lx.in","r",stdin);
	n=read()-1;
	poly a(n);
	for(ri i=0;i<=n;++i)a[i]=read();
	init(n*2),a=a.extend(lim),a=a.poly_inv(a,lim);
	for(ri i=0;i<=n;++i)cout<<a[i]<<' ';
	return 0;
}

2018.12.30 洛谷P4238 【模板】多项式求逆的更多相关文章

  1. 洛谷 P4238 [模板] 多项式求逆

    题目:https://www.luogu.org/problemnew/show/P4238 看博客:https://www.cnblogs.com/xiefengze1/p/9107752.html ...

  2. 多项式求逆元详解+模板 【洛谷P4238】多项式求逆

    概述 多项式求逆元是一个非常重要的知识点,许多多项式操作都需要用到该算法,包括多项式取模,除法,开跟,求ln,求exp,快速幂.用快速傅里叶变换和倍增法可以在$O(n log n)$的时间复杂度下求出 ...

  3. 洛谷.4238.[模板]多项式求逆(NTT)

    题目链接 设多项式\(f(x)\)在模\(x^n\)下的逆元为\(g(x)\) \[f(x)g(x)\equiv 1\ (mod\ x^n)\] \[f(x)g(x)-1\equiv 0\ (mod\ ...

  4. 【洛谷4238】 多项式求逆(NTT,分治)

    前言 多项式求逆还是爽的一批 Solution 考虑分治求解这个问题. 直接每一次NTT一下就好了. 代码实现 #include<stdio.h> #include<stdlib.h ...

  5. 洛谷.3803.[模板]多项式乘法(FFT)

    题目链接:洛谷.LOJ. FFT相关:快速傅里叶变换(FFT)详解.FFT总结.从多项式乘法到快速傅里叶变换. 5.4 又看了一遍,这个也不错. 2019.3.7 叕看了一遍,推荐这个. #inclu ...

  6. 洛谷.3803.[模板]多项式乘法(NTT)

    题目链接:洛谷.LOJ. 为什么和那些差那么多啊.. 在这里记一下原根 Definition 阶 若\(a,p\)互质,且\(p>1\),我们称使\(a^n\equiv 1\ (mod\ p)\ ...

  7. 洛谷.4512.[模板]多项式除法(NTT)

    题目链接 多项式除法 & 取模 很神奇,记录一下. 只是主要部分,更详细的和其它内容看这吧. 给定一个\(n\)次多项式\(A(x)\)和\(m\)次多项式\(D(x)\),求\(deg(Q) ...

  8. 洛谷 P4512 [模板] 多项式除法

    题目:https://www.luogu.org/problemnew/show/P4512 看博客:https://www.cnblogs.com/owenyu/p/6724611.html htt ...

  9. 洛谷P4238【模板】多项式求逆

    洛谷P4238 多项式求逆:http://blog.miskcoo.com/2015/05/polynomial-inverse 注意:直接在点值表达下做$B(x) \equiv 2B'(x) - A ...

随机推荐

  1. Karma - MVC Framework for Unity3D

    Karma is an MVC framework for Unity3D. Because of how Unity is structured, it actually turns out to ...

  2. VCSA 6.5, 初始化设置root密码失败can't set root password 或 安装时卡在80%

    是因为下载的非官方的包密码过期了,如果是Windows引导安装: 安装完虚拟机的时候就马上执行下面步骤,修改密码有效期即可. 重启vcsa,在引导界面(photon的图形界面)里按e编辑启动项 在co ...

  3. xadmin系列之启动、注册、分发

    a.启动首先要加载settings中定义的INSTALLED_APPS列表中的app b.我们进入xadmin的XadminConfig文件 from django.apps import AppCo ...

  4. PHP系统编程--PHP进程信号处理(转)

    原地址:https://www.cnblogs.com/linzhenjie/p/5485436.html PHP的pcntl扩展提供了信号处理的功能,利用它可以让PHP来接管信号的处理,在开发服务器 ...

  5. [Java]Spring Ioc讲解,不怕你不懂

    原文地址 引述:IoC(控制反转:Inverse of Control)是Spring容器的内核,AOP.声明式事务等功能在此基础上开花结果.但是IoC这个重要的概念却比较晦涩隐讳,不容易让人望文生义 ...

  6. java的eclipse的使用

    1下载eclipse地址:www.eclipse.org/downloads/ 解压就可安装 注意: 这可能你是没有安装java运行环境(jre或jdk) 直接www.java.com,下载就行 下一 ...

  7. VS2013中Nuget程序包管理器控制台使用入门(一)-准备环境(原创)

    准备环境: 1.打开VS2013IDE集成开发环境. 2.新建一个Asp.net Mvc的项目,比如命名为:MvcApplication1 3.打开 菜单"工具"->&quo ...

  8. pycharm 配置支持vue

    http://www.cnblogs.com/c-x-m/p/9229199.html

  9. c#一个统计运行时间方法

    public string STD(int HowManySecond) { ) { "; } string ShowStr = ""; * )) { ShowStr + ...

  10. 常用Date操作方法

    public class DateUtils {     /**    * 获取时间戳    * 输出结果:1438692801766    */   @Test   public void getT ...