(20)The most mysterious star in the universe
https://www.ted.com/talks/tabetha_boyajian_the_most_mysterious_star_in_the_universe/transcript
00:12
Extraordinary claims require extraordinary evidence, and it is my job, my responsibility, as an astronomer to remind people that alien hypotheses[haɪˈpaθəˌsiz] should always be a last resort.
00:29
Now, I want to tell you a story about that. It involves data from a NASA mission, ordinary people and one of the most extraordinary stars in our galaxy.
00:41
It began in 2009 with the launch of NASA's Kepler mission. Kepler's main scientific objective was to find planets outside of our solar system. It did this by staring at a single field in the sky, this one, with all the tiny boxes. And in this one field, it monitored the brightness of over 150,000 stars continuously for four years, taking a data point every 30 minutes. It was looking for what astronomers call a transit. This is when the planet's orbit is aligned in our line of sight, just so that the planet crosses in front of a star. And when this happens, it blocks out a tiny bit of starlight, which you can see as a dip in this curve.
01:31
And so the team at NASA had developed very sophisticated[səˈfɪstɪkeɪtɪd] computers to search for transits in all the Kepler data.
01:40
At the same time of the first data release, astronomers at Yale were wondering an interesting thing: What if computers missed something?
01:53
And so we launched the citizen science project called Planet Hunters to have people look at the same data. The human brain has an amazing ability for pattern recognition, sometimes even better than a computer. However, there was a lot of skepticism around this. My colleague, Debra Fischer, founder of the Planet Hunters project, said that people at the time were saying, "You're crazy. There's no way that a computer will miss a signal." And so it was on, the classic human versus machine gamble. And if we found one planet, we would be thrilled. When I joined the team four years ago, we had already found a couple. And today, with the help of over 300,000 science enthusiasts, we have found dozens, and we've also found one of the most mysterious stars in our galaxy.
02:45
So to understand this, let me show you what a normal transit in Kepler data looks like. On this graph on the left-hand side you have the amount of light, and on the bottom is time. The white line is light just from the star, what astronomers call a light curve. Now, when a planet transits a star, it blocks out a little bit of this light, and the depth of this transit reflects the size of the object itself. And so, for example, let's take Jupiter. Planets don't get much bigger than Jupiter. Jupiter will make a one percent drop in a star's brightness. Earth, on the other hand, is 11 times smaller than Jupiter, and the signal is barely visible in the data.
03:26
So back to our mystery. A few years ago, Planet Hunters were sifting through data looking for transits, and they spotted a mysterious signal coming from the star KIC 8462852. The observations in May of 2009 were the first they spotted, and they started talking about this in the discussion forums.
03:47
They said and object like Jupiter would make a drop like this in the star's light, but they were also saying it was giant. You see, transits normally only last for a few hours, and this one lasted for almost a week.
04:01
They were also saying that it looks asymmetric, meaning that instead of the clean, U-shaped dip that we saw with Jupiter, it had this strange slope that you can see on the left side. This seemed to indicate that whatever was getting in the way and blocking the starlight was not circular like a planet. There are few more dips that happened, but for a couple of years, it was pretty quiet.
04:26
And then in March of 2011, we see this. The star's light drops by a whole 15 percent, and this is huge compared to a planet, which would only make a one percent drop. We described this feature as both smooth and clean. It also is asymmetric, having a gradual dimming that lasts almost a week, and then it snaps right back up to normal in just a matter of days.
04:52
And again, after this, not much happens until February of 2013. Things start to get really crazy. There is a huge complex of dips in the light curve that appear, and they last for like a hundred days, all the way up into the Kepler mission's end. These dips have variable shapes. Some are very sharp, and some are broad, and they also have variable durations. Some last just for a day or two, and some for more than a week. And there's also up and down trends within some of these dips, almost like several independent events were superimposed on top of each other. And at this time, this star drops in its brightness over 20 percent. This means that whatever is blocking its light has an area of over 1,000 times the area of our planet Earth.
05:46
This is truly remarkable. And so the citizen scientists, when they saw this, they notified the science team that they found something weird enough that it might be worth following up. And so when the science team looked at it, we're like, "Yeah, there's probably just something wrong with the data." But we looked really, really, really hard, and the data were good. And so what was happening had to be astrophysical, meaning that something in space was getting in the way and blocking starlight. And so at this point, we set out to learn everything we could about the star to see if we could find any clues to what was going on. And the citizen scientists who helped us in this discovery, they joined along for the ride watching science in action firsthand.
06:37
First, somebody said, you know, what if this star was very young and it still had the cloud of material it was born from surrounding it. And then somebody else said, well, what if the star had already formed planets, and two of these planets had collided, similar to the Earth-Moon forming event. Well, both of these theories could explain part of the data, but the difficulties were that the star showed no signs of being young, and there was no glow from any of the material that was heated up by the star's light, and you would expect this if the star was young or if there was a collision and a lot of dust was produced. And so somebody else said, well, how about a huge swarm of comets that are passing by this star in a very elliptical orbit? Well, it ends up that this is actually consistent with our observations. But I agree, it does feel a little contrived. You see, it would take hundreds of comets to reproduce what we're observing. And these are only the comets that happen to pass between us and the star. And so in reality, we're talking thousands to tens of thousands of comets. But of all the bad ideas we had, this one was the best. And so we went ahead and published our findings.
08:00
Now, let me tell you, this was one of the hardest papers I ever wrote. Scientists are meant to publish results, and this situation was far from that. And so we decided to give it a catchy title, and we called it: "Where's The Flux?" I will let you work out the acronym.
08:18
(Laughter)
08:22
So this isn't the end of the story. Around the same time I was writing this paper, I met with a colleague of mine, Jason Wright, and he was also writing a paper on Kepler data. And he was saying that with Kepler's extreme precision, it could actually detect alien megastructures around stars, but it didn't. And then I showed him this weird data that our citizen scientists had found, and he said to me, "Aw crap, Tabby. Now I have to rewrite my paper."
08:54
So yes, the natural explanations were weak, and we were curious now. So we had to find a way to rule out aliens. So together, we convinced a colleague of ours who works on SETI, the Search for Extraterrestrial Intelligence, that this would be an extraordinary target to pursue. We wrote a proposal to observe the star with the world's largest radio telescope at the Green Bank Observatory.
09:21
A couple months later, news of this proposal got leaked to the press and now there are thousands of articles, over 10,000 articles, on this star alone. And if you search Google Images, this is what you'll find.
09:39
Now, you may be wondering, OK, Tabby, well, how do aliens actually explain this light curve? OK, well, imagine a civilization that's much more advanced than our own. In this hypothetical circumstance, this civilization would have exhausted the energy supply of their home planet, so where could they get more energy? Well, they have a host star just like we have a sun, and so if they were able to capture more energy from this star, then that would solve their energy needs. So they would go and build huge structures. These giant megastructures, like ginormous solar panels, are called Dyson spheres.
10:22
This image above are lots of artists' impressions of Dyson spheres. It's really hard to provide perspective on the vastness of these things, but you can think of it this way. The Earth-Moon distance is a quarter of a million miles. The simplest element on one of these structures is 100 times that size. They're enormous. And now imagine one of these structures in motion around a star. You can see how it would produce anomalies in the data such as uneven, unnatural looking dips.
10:58
But it remains that even alien megastructures cannot defy the laws of physics. You see, anything that uses a lot of energy is going to produce heat, and we don't observe this. But it could be something as simple as they're just reradiating it away in another direction, just not at Earth.
11:23
Another idea that's one of my personal favorites is that we had just witnessed an interplanetary space battle and the catastrophic destruction of a planet. Now, I admit that this would produce a lot of dust that we don't observe. But if we're already invoking aliens in this explanation, then who is to say they didn't efficiently clean up all this mess for recycling purposes?
11:49
(Laughter)
11:50
You can see how this quickly captures your imagination.
11:55
Well, there you have it. We're in a situation that could unfold to be a natural phenomenon we don't understand or an alien technology we don't understand. Personally, as a scientist, my money is on the natural explanation. But don't get me wrong, I do think it would be awesome to find aliens. Either way, there is something new and really interesting to discover.
12:24
So what happens next? We need to continue to observe this star to learn more about what's happening. But professional astronomers, like me, we have limited resources for this kind of thing, and Kepler is on to a different mission.
12:39
And I'm happy to say that once again, citizen scientists have come in and saved the day. You see, this time, amateur astronomers with their backyard telescopes stepped up immediately and started observing this star nightly at their own facilities, and I am so excited to see what they find.
13:03
What's amazing to me is that this star would have never been found by computers because we just weren't looking for something like this. And what's more exciting is that there's more data to come. There are new missions that are coming up that are observing millions more stars all over the sky.
13:26
And just think: What will it mean when we find another star like this? And what will it mean if we don't find another star like this?
13:37
Thank you.
13:38
(Applause)
(20)The most mysterious star in the universe的更多相关文章
- net programming guid
Beej's Guide to Network Programming Using Internet Sockets Brian "Beej Jorgensen" Hallbeej ...
- WEB前端开发学习:源码canvas 雪
WEB前端开发学习:源码canvas 雪 双旦节要到了,程序员们为了响应气氛,特别用代码制作了动态雪花,WEB前端开发学习的初学者们一起跟着案例做一遍吧! <!DOCTYPE html> ...
- GitHub上史上最全的Android开源项目分类汇总 (转)
GitHub上史上最全的Android开源项目分类汇总 标签: github android 开源 | 发表时间:2014-11-23 23:00 | 作者:u013149325 分享到: 出处:ht ...
- GitHub前50名的Objective-C动画相关库
GitHub的Objective-C的动画UI库其实是最多的一部分,GitHub有相当一部分的动画大牛,如Jonathan George,Nick Lockwood,Kevin,Roman Efimo ...
- QUI操作超时弹出登录窗口登录的处理方式
在使用QUI开发的业务系统中,如果长时间没操作,session过期后,再次操作系统超时会自动跳转到登陆页面,如果当前有一些操作没有保存,需要重新登录后再次填写信息,用户体验很不好! 为了避免超时后页面 ...
- GitHub前50名的Objective-C动画相关库相关推荐,请自行研究
GitHub的Objective-C的动画UI库其实是最多的一部分,GitHub有相当一部分的动画大牛,如Jonathan George,Nick Lockwood,Kevin,Roman Efimo ...
- CSS3制作图形大全——碉堡了
为方便观看效果图,请移步原文:https://www.jqhtml.com/8045.html Square #square { width: 100px; height: 100 ...
- L330 Black hole picture captured for first time in space ‘breakthrough’
Black hole picture captured for first time in space ‘breakthrough’ Astronomers have captured the fir ...
- 第二章 ActionScript 3.0学习之画星星(鼠标及键盘事件)
今天觉得学到的比较有趣,所以记录之......~~~ 下面这段就是画出星星的代码:StarShape.as package { import flash.display.Shape; import f ...
随机推荐
- TZOJ 3244 Happy YuYu's Birthday(数学几何)
描述 9月10日教师节,也是YuYu的生日,妈妈给YuYu准备了一个很大的圆形蛋糕,YuYu看中了蛋糕中间那诱人的樱桃(都挤到一块啦),小家伙很高兴,心里开始盘算着如何将樱桃全部分给自己.YuYu是个 ...
- 干净的ssm框架项目
其中数据库只有如下表与字段 访问效果: 项目下载: 干净的ssm框架项目.rar
- JAVA8 ARRAY、LIST操作 汇【5】)- JAVA8 LAMBDA LIST统计(求和、最大、最小、平均)
public class Apple { private Integer id; private String name; private BigDecimal money; private Inte ...
- 使用BootStrap框架中的轮播插件
在使用bootstrap框架中的轮播插件时,效果做出来后,无法通过点击小圆行的按钮来选择特定的图片. 后面发现是最开始的<div>标签中少写了一个id.一开始<div>标签是这 ...
- hdu 1558 (线段相交+并查集) Segment set
题目:http://acm.hdu.edu.cn/showproblem.php?pid=1558 题意是在坐标系中,当输入P(注意是大写,我当开始就wa成了小写)的时候输入一条线段的起点坐标和终点坐 ...
- CH6202 黑暗城堡
一道最短路+生成树 原题链接 实际上就是生成树的中每个点到节点\(1\)的距离等于原图中这个点到节点\(1\)的最短距离,求这样的生成树的棵数. 先用\(SPFA\)或\(Dijkstra\)求出所有 ...
- windows下git的使用方法(码云)
这表文章主要是用了可视化操作: 使用命令行操作:https://www.cnblogs.com/mswyf/p/9370238.html 一.安装Git Bash 为了在windows下使用Git,我 ...
- [Robot Framework] Robot Framework用Execute Javascript对XPath表示的元素执行scrollIntoView操作
有些元素需要通过滚动条滚动才能变得可见. 如果这些元素在DOM结构里面存在,可以通过scrollIntoView让其可见,但如果在DOM结构里面不存在那就要通过拖动滚动条让其变的可见. Execute ...
- 服装类Web原型制作分享——Rodd & Gunn
Rodd & Gunn是国外知名的服装类品牌,服装种类繁多,有衣服.帽子.穿戴饰品等. 本原型由国产Mockplus(原型工具)和iDoc(智能标注,一键切图工具)提供. 网站原型以图文排版为 ...
- 含有选择器的 bootstrap菜单
var menu = new BootstrapMenu('#jsmind_container jmnode:not(.root)', { actions: [{ name: '展开节点', onCl ...