欢迎关注我的新博客地址:http://cuipengfei.me/blog/2014/10/31/spark-fold-aggregate-why-not-foldleft/

大家都知道Scala标准库的List有一个用来做聚合操作的foldLeft方法。

比方我定义一个公司类:

1
case class Company(name:String, children:Seq[Company]=Nil)

它有名字和子公司。 然后定义几个公司:

1
val companies = List(Company("B"),Company("A"),Company("T"))

三家大公司,然后呢,我如果有一家超牛逼的公司把它们给合并了:

1
companies.foldLeft(Company("King"))((king,company)=>Company(name=king.name,king.children:+company))

这个运行的结果是这种:

1
2
scala> companies.foldLeft(Company("King"))((king,company)=>Company(name=king.name,king.children:+company))
res6: Company = Company(King,List(Company(B,List()), Company(A,List()), Company(T,List())))

可见foldLeft的结果是一家包括了BAT三大家得新公司。

由List[Company]聚合出一个新的Company,这样的属于foldLeft的同构聚合操作。

同一时候,foldLeft也能够做异构的聚合操作:

1
companies.foldLeft("")((acc,company)=>acc+company.name)

它的运行结果是这种:

1
2
scala> companies.foldLeft("")((acc,company)=>acc+company.name)
res7: String = BAT

由List[Company]聚合出一个String。

这种API感觉非常方便。仅仅要是聚合。不管同构异构。都能够用它来做。

近期接触了Spark,当中的RDD是做分布式计算时最经常使用的一个类。

RDD有一个叫做fold的API,它和foldLeft的签名非常像,唯一差别是它仅仅能做同构聚合操作。

也就是说假设你有一个RDD[X],通过fold,你仅仅能构造出一个X。

假设我想通过一个RDD[X]构造一个Y出来呢?

那就得用aggregate这个API了,aggregate的签名是这种:

1
aggregate[U](zeroValue: U)(seqOp: (U, T) ⇒ U, combOp: (U, U) ⇒ U)(implicit arg0: ClassTag[U]): U

它比fold和foldLeft多须要一个combOp做參数。

这让我非常不解,同构和异构的API干嘛非得拆成两个呢?怎么不能学Scala的标准库,把它做成类似foldLeft的样子呢?

后来想明确了,这是因为Spark须要分布运算造成的。

先想一下Scala List的foldLeft是怎么工作的?

1
companies.foldLeft(Company("King"))((king,company)=>Company(name=king.name,king.children:+company))
  1. 拿到初始值,即名字为king的公司,把它和list中的第一个公司合并,成为一个包括一家子公司的新公司
  2. 把上一步中的新公司拿来和list中的第二个公司合并,成为一个包括两家子公司的新公司
  3. 把上一步中的新公司拿来和list中的第三个公司合并,成为一个包括三家子公司的新公司

这是同构的过程。

1
companies.foldLeft("")((acc,company)=>acc+company.name)
  1. 拿到初始值,即空字符串。把它和list中的第一个公司的名字拼在一起,成为B
  2. 把上一步中的B第二个公司名字拼一起。成为BA
  3. 把上一步中的BA拿来和list中的第三个公司的名字拼一起,成为BAT

这是异构的过程。

像多米诺骨牌一样,从左到右依次把list中的元素吸收入结果中。

如今如果RDD[X]中有一个类似foldLeft的API,其签名和foldLeft一致,我如今调用foldLeft,给它一个f:(Y,X)=>Y,接下来该发生什么呢?

  1. 由于要分布计算,所以我先要把手里的非常多个X分成几份。分发到不同的节点上去
  2. 每一个节点把拿到的非常多个X计算出一个Y出来
  3. 把全部节点的结果拿来,这时我手里就有了非常多个Y
  4. 啊。。。我不知道怎么把非常多个Y变成一个Y啊。。。

因为Spark的RDD不像Scala的List一样仅仅须要推倒一副多米诺骨牌。而是要推倒非常多副。最后再对非常多副多米诺骨牌的结果做聚合。

这时假设是同构还好,我仅仅须要再用f:(X,X)=>X做一遍就ok了。

可是假设是异构的,那我就必须得再须要一个f:(Y,Y)=>Y了。

Spark RDD的fold和aggregate为什么是两个API?为什么不是一个foldLeft?的更多相关文章

  1. Apache Spark : RDD

    Resilient Distributed Datasets Resilient Distributed Datasets (RDD) is a fundamental data structure ...

  2. Spark RDD

    对RDD的学习进行一下整理 RDD:基于内存的集群计算容错抽象 分布式内存抽象的概念---弹性分布式数据集(RDD),它具备MapReduce等数据流模型的容错特性,并且允许开发人员在大型集群上执行基 ...

  3. Spark RDD概念学习系列之Spark的算子的分类(十一)

    Spark的算子的分类 从大方向来说,Spark 算子大致可以分为以下两类: 1)Transformation 变换/转换算子:这种变换并不触发提交作业,完成作业中间过程处理. Transformat ...

  4. spark RDD编程,scala版本

    1.RDD介绍:     RDD,弹性分布式数据集,即分布式的元素集合.在spark中,对所有数据的操作不外乎是创建RDD.转化已有的RDD以及调用RDD操作进行求值.在这一切的背后,Spark会自动 ...

  5. Spark RDD编程核心

    一句话说,在Spark中对数据的操作其实就是对RDD的操作,而对RDD的操作不外乎创建.转换.调用求值. 什么是RDD RDD(Resilient Distributed Dataset),弹性分布式 ...

  6. Spark RDD :Spark API--Spark RDD

    一.RDD的概述 1.1 什么是RDD? RDD(Resilient Distributed Dataset)叫做弹性分布式数据集,是Spark中最基本的数据抽象,它代表一个不可变.可分区.里面的元素 ...

  7. Spark Rdd coalesce()方法和repartition()方法

    在Spark的Rdd中,Rdd是分区的. 有时候需要重新设置Rdd的分区数量,比如Rdd的分区中,Rdd分区比较多,但是每个Rdd的数据量比较小,需要设置一个比较合理的分区.或者需要把Rdd的分区数量 ...

  8. Spark RDD aggregateByKey

    aggregateByKey 这个RDD有点繁琐,整理一下使用示例,供参考 直接上代码 import org.apache.spark.rdd.RDD import org.apache.spark. ...

  9. spark RDD transformation与action函数整理

    1.创建RDD val lines = sc.parallelize(List("pandas","i like pandas")) 2.加载本地文件到RDD ...

随机推荐

  1. Linux内核入门(六)—— __attribute__ 机制【转】

    转自:https://blog.csdn.net/yunsongice/article/details/5538020 GNU C的一大特色(却不被初学者所知)就是__attribute__机制.__ ...

  2. jquery-实用例子

    一:jquery实现全选取消反选 3元运算:条件?真值:假值 <!DOCTYPE html> <html lang="en"> <head> & ...

  3. intellij 出现“Usage of API documented as @since 1.8+”的解决办法

    intellij 出现“Usage of API documented as @since 1.8+”的解决办法 Usage of API documented as @since 1.8+ This ...

  4. vector的reserve和resize(转)

    转自:http://www.cnblogs.com/qlee/archive/2011/05/16/2048026.html vector 的reserve增加了vector的capacity,但是它 ...

  5. EntityFrameWork 图解

  6. JDBC事务与事务隔离级别详解

    事务基本概念 一组要么同时执行成功,要么同时执行失败的SQL语句.是数据库操作的一个执行单元. 事务开始于: 连接到数据库上,并执行一条DML语句insert.update或delete 前一个事务结 ...

  7. 详解VirtualBox虚拟机网络环境解析和搭建-NAT、桥接、Host-Only、Internal、端口映射

    本文以VirtualBox为例 如果出现主机无法ping通虚拟机的情况,请首先确认虚拟机防火墙已关闭. 一.NAT模式 特点: 1.如果主机可以上网,虚拟机可以上网 2.虚拟机之间不能ping通 3. ...

  8. UVa140 Bandwidth 小剪枝+双射小技巧+枚举全排列+字符串的小处理

    给出一个图,找出其中的最小带宽的排列.具体要求见传送门:UVa140 这题有些小技巧可以简化代码的编写. 本题的实现参考了刘汝佳老师的源码,的确给了我许多启发,感谢刘老师. 思路: 建立双射关系:从字 ...

  9. Java反射初探 ——“当类也学会照镜子”

    反射的作用 开门见山地说说反射的作用   1.为我们提供了全面的分析类信息的能力 2.动态加载类   我理解的“反射”的意义 (仅个人理解哈)   我理解的java反射机制就是: 提供一套完善而强大的 ...

  10. app微信支付宝支付后台的插件模式+回调通过spring广播处理后续业务(已亲测可用)

    写在前面的话:每当我们做一个项目,基本上都会涉及到支付的业务,最常用的莫过于微信和支付宝的支付了,项目有bug,有问题,都不叫问题,可一旦钱出了问题,那就是大问题了,所以在支付业务上我们必须慎之又慎! ...