Description

"奋战三星期,造台计算机"。小W响应号召,花了三星期造了台文艺计算姬。文艺计算姬比普通计算机有更多的艺术细胞。
普通计算机能计算一个带标号完全图的生成树个数,而文艺计算姬能计算一个带标号完全二分图的生成树个数。
更具体地,给定一个一边点数为n,另一边点数为m,共有n*m条边的带标号完全二分图K_{n,m},计算姬能快速算出其生成树个数。
小W不知道计算姬算的对不对,你能帮助他吗?

Input

仅一行三个整数n,m,p,表示给出的完全二分图K_{n,m}
1 <= n,m,p <= 10^18

Output

仅一行一个整数,表示完全二分图K_{n,m}的生成树个数,答案需要模p。

Sample Input

2 3 7

Sample Output

5

Solution

首先先把(度数矩阵-邻接矩阵)搞出来,这里以样例为例。
$
\left\{
\begin{matrix}
3&0&-1&-1&-1\\
0&3&-1&-1&-1\\
-1&-1&2&0&0\\
-1&-1&0&2&0\\
-1&-1&0&0&2\\
\end{matrix}
\right\}
$
按照求矩阵树的方法随便删掉一行一列,这里删掉了最后一行和最后一列。
$
\left\{
\begin{matrix}
3&0&-1&-1\\
0&3&-1&-1\\
-1&-1&2&0\\
-1&-1&0&2\\
\end{matrix}
\right\}
$
把前$n-1$行和后$m-1$行都加到第$n$行
$
\left\{
\begin{matrix}
3&0&-1&-1\\
1&1&0&0\\
-1&-1&2&0\\
-1&-1&0&2\\
\end{matrix}
\right\}
$
用第$n$行的去加到后面$m-1$行上,把$-1$给消掉。
$
\left\{
\begin{matrix}
3&0&-1&-1\\
1&1&0&0\\
0&0&2&0\\
0&0&0&2\\
\end{matrix}
\right\}
$

这样的话这个矩阵的行列式显然就是$m^{n-1}n^{m-1}$了。
记得快速乘。

Code

 #include<cstdio>
#define LL long long
using namespace std; LL n,m,p; LL Mul(LL a,LL b)
{
LL tmp=a*b-(LL)((long double)a*b/p+0.1)*p;
return tmp<?tmp+p:tmp;
} LL Qpow(LL a,LL b)
{
LL ans=;
while (b)
{
if (b&) ans=Mul(ans,a);
a=Mul(a,a); b>>=;
}
return ans;
} int main()
{
scanf("%lld%lld%lld",&n,&m,&p);
printf("%lld",Mul(Qpow(n,m-),Qpow(m,n-)));
}

BZOJ4766:文艺计算姬(矩阵树定理)的更多相关文章

  1. [bzoj4766] 文艺计算姬 (矩阵树定理+二分图)

    传送门 Description "奋战三星期,造台计算机".小W响应号召,花了三星期造了台文艺计算姬.文艺计算姬比普通计算机有更多的艺 术细胞.普通计算机能计算一个带标号完全图的生 ...

  2. BZOJ 4766: 文艺计算姬 [矩阵树定理 快速乘]

    传送门 题意: 给定一个一边点数为n,另一边点数为m,共有n*m条边的带标号完全二分图$K_{n,m}$ 求生成树个数 1 <= n,m,p <= 10^18 显然不能暴力上矩阵树定理 看 ...

  3. bzoj 4766: 文艺计算姬 矩阵树定理

    题目: 给定一个一边点数为\(n\),另一边点数为\(m\),共有\(n*m\)条边的带标号完全二分图\(K_{n,m}\) 计算其生成树个数 \(n,m,p \leq 10^{18} ,p为模数\) ...

  4. bzoj4766 文艺计算姬

    Description "奋战三星期,造台计算机".小W响应号召,花了三星期造了台文艺计算姬.文艺计算姬比普通计算机有更多的艺术细胞.普通计算机能计算一个带标号完全图的生成树个数, ...

  5. BZOJ4766: 文艺计算姬(Prufer序列)

    题面 传送门 题解 结,结论题? 答案就是\(n^{m-1}m^{n-1}\) 我们考虑它的\(Prufer\)序列,最后剩下的两个点肯定是一个在左边一个在右边,设左边\(n\)个点,右边\(m\)个 ...

  6. Bzoj4766: 文艺计算姬(Matrix-tree/prufer)

    BZOJ 答案就是 \(n^{m-1}m^{n-1}\) \(prufer\) 证明: \(n\) 中的数字出现 \(m-1\) 次,\(m\) 中出现 \(n-1\) 次,根据 \(prufer\) ...

  7. [bzoj4766]文艺计算姬——完全二分图生成树个数

    Brief Description 求\(K_{n,m}\) Algorithm Design 首先我们有(Matrix Tree)定理,可以暴力生成几组答案,发现一些规律: \[K_{n,m} = ...

  8. 【BZOJ】4766: 文艺计算姬

    [题目]给定两边节点数为n和m的完全二分图,求生成树数取模给定的p.n,m,p<=10^18. [算法]生成树计数(矩阵树定理) [题解]参考自 [bzoj4766]文艺计算姬 by WerKe ...

  9. 图论&数学:矩阵树定理

    运用矩阵树定理进行生成树计数 给定一个n个点m条边的无向图,问生成树有多少种可能 直接套用矩阵树定理计算即可 矩阵树定理的描述如下: 首先读入无向图的邻接矩阵,u-v G[u][v]++ G[v][u ...

随机推荐

  1. wpf 控件大小随窗体大小改变而改变

    WPF可以直接通过设置图形类控件的水平和垂直Alighment为Stretch实现用一个ViewBox装上所有的Window内容然后当window缩放时就可以一起放大缩小了ViewBox的显示机制是, ...

  2. Java面试题精选

    jdk ┌──────────────┬───────────────────────────────────────────────────────┐ │ │ │ ├──────────────┼─ ...

  3. Eclipse中Maven WEB工程tomcat调试

    最近没事了玩一下maven,使用maven管理工程中的依赖包非常的方便.建立maven web工程的时候开始不知道怎么用tomcat来调试,总是使用mave的tomcat插件发布了后来调试,觉得非常的 ...

  4. Tomcat7.0安装配置详细(图文)

    说明:Tomcat服务器上一个符合J2EE标准的Web服务器,在tomcat中无法运行EJB程序,如果要运行可以选择能够运行EJB程序的容器WebLogic,WebSphere,Jboss等Tomca ...

  5. [android] 手机卫士号码归属地查询

    使用小米号码归属地数据库,有两张表data1和data2 先查询data1表,把手机号码截取前7位 select outkey from data1 where id=”前七位手机号” 再查询data ...

  6. 【Java基础】6、java中使用switch-case的用法及注意事项超全总结

    1.switch-case注意事项: switch(A),括号中A的取值只能是整型或者可以转换为整型的数值类型,比如byte.short.int.char.还有枚举:需要强调的是:long和Strin ...

  7. java通过url在线预览Word、excel、ppt、pdf、txt文档

    java通过url在线预览Word.excel.ppt.pdf.txt文档中的内容[只获得其中的文字] 在页面上显示各种文档中的内容.在servlet中的逻辑 word: BufferedInputS ...

  8. java项目运用server运行(eclipse、myeclipse通用)

    右键点击”new“选择“Other”,打开选项 勾选”Show All Wizards“ 然后在搜索处输入server,选择server,点击next 刚进来时此处都是空的,点击Configure r ...

  9. JAVA设计模式详解(四)----------单例模式

    上一章我们学习了装饰者模式,这章LZ带给大家的是单例模式. 首先单例模式是用来干嘛的?它是用来实例化一个独一无二的对象!那这有什么用处?有一些对象我们只需要一个,比如缓存,线程池等.而事实上,这类对象 ...

  10. Flink1.4.0连接Kafka0.10.2时遇到的问题

    Flink1.4.0连接部署在Linux上的Kafka0.10.2时,报如下异常: org.apache.flink.streaming.connectors.kafka.FlinkKafkaCons ...