基于tensorflow使用全连接层函数实现多层神经网络并保存和读取模型
使用之前那个格式写法到后面层数多的话会很乱,所以编写了一个函数创建层,这样看起来可读性高点也更方便整理后期修改维护
#全连接层函数 def fcn_layer(
inputs, #输入数据
input_dim, #输入层神经元数量
output_dim,#输出层神经元数量
activation =None): #激活函数 W = tf.Variable(tf.truncated_normal([input_dim,output_dim],stddev = 0.1))
#以截断正态分布的随机初始化W
b = tf.Variable(tf.zeros([output_dim]))
#以0初始化b
XWb = tf.matmul(inputs,W)+b # Y=WX+B if(activation==None): #默认不使用激活函数
outputs =XWb
else:
outputs = activation(XWb) #代入参数选择的激活函数
return outputs #返回
#各层神经元数量设置
H1_NN = 256
H2_NN = 64
H3_NN = 32 #构建输入层
x = tf.placeholder(tf.float32,[None,784],name='X')
y = tf.placeholder(tf.float32,[None,10],name='Y')
#构建隐藏层
h1 = fcn_layer(x,784,H1_NN,tf.nn.relu)
h2 = fcn_layer(h1,H1_NN,H2_NN,tf.nn.relu)
h3 = fcn_layer(h2,H2_NN,H3_NN,tf.nn.relu)
#构建输出层
forward = fcn_layer(h3,H3_NN,10,None)
pred = tf.nn.softmax(forward)#输出层分类应用使用softmax当作激活函数
这样写方便后期维护 不必对着一群 W1 W2..... Wn
接下来记录一下保存模型的方法
#保存模型
save_step = 5 #储存模型力度
import os
ckpt_dir = '.ckpt_dir/'
if not os.path.exists(ckpt_dir):
os.makedirs(ckpt_dir)
5轮训练保存一次,以后大模型可以调高点,接下来需要在模型整合处修改一下
saver = tf.train.Saver() #声明完所有变量以后,调用tf.train.Saver开始记录
和
if(epochs+1) % save_step == 0:
saver.save(sess, os.path.join(ckpt_dir,"mnist_h256_model_{:06d}.ckpt".format(epochs+1)))#储存模型
print("mnist_h256_model_{:06d}.ckpt saved".format(epochs+1))#输出情况
至此储存模型结束
接下来是还原模型,要注意还原的模型层数和神经元数量大小需要和之前储存模型的大小一致。
第一步设置保存模型文件的路径
#必须指定存储位置
ckpt_dir = "/ckpt_dir/"
存盘只会保存最近的5次,恢复会恢复最新那一份
#恢复模型,创建会话 saver = tf.train.Saver() sess = tf.Session()
init = tf.global_variables_initializer()
sess.run(init) ckpt = tf.train.get_checkpoint_state(ckpt_dir)#选择模型保存路径
if ckpt and ckpt.model_checkpoint_path:
saver.restore(sess ,ckpt.model_checkpoint_path)#从已保存模型中读取参数
print("Restore model from"+ckpt.model_checkpoint_path)
至此模型恢复完成 下面可以选择继续训练或者评估使用
最后附上完整代码
import tensorflow as tf
import tensorflow.examples.tutorials.mnist.input_data as input_data
import numpy as np
import matplotlib.pyplot as plt
from time import time
mnist = input_data.read_data_sets("data/",one_hot = True)
#导入Tensorflwo和mnist数据集等 常用库
#全连接层函数 def fcn_layer(
inputs, #输入数据
input_dim, #输入层神经元数量
output_dim,#输出层神经元数量
activation =None): #激活函数 W = tf.Variable(tf.truncated_normal([input_dim,output_dim],stddev = 0.1))
#以截断正态分布的随机初始化W
b = tf.Variable(tf.zeros([output_dim]))
#以0初始化b
XWb = tf.matmul(inputs,W)+b # Y=WX+B if(activation==None): #默认不使用激活函数
outputs =XWb
else:
outputs = activation(XWb) #代入参数选择的激活函数
return outputs #返回
#各层神经元数量设置
H1_NN = 256
H2_NN = 64
H3_NN = 32 #构建输入层
x = tf.placeholder(tf.float32,[None,784],name='X')
y = tf.placeholder(tf.float32,[None,10],name='Y')
#构建隐藏层
h1 = fcn_layer(x,784,H1_NN,tf.nn.relu)
h2 = fcn_layer(h1,H1_NN,H2_NN,tf.nn.relu)
h3 = fcn_layer(h2,H2_NN,H3_NN,tf.nn.relu)
#构建输出层
forward = fcn_layer(h3,H3_NN,10,None)
pred = tf.nn.softmax(forward)#输出层分类应用使用softmax当作激活函数
#损失函数使用交叉熵
loss_function = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits = forward,labels = y))
#设置训练参数
train_epochs = 50
batch_size = 50
total_batch = int(mnist.train.num_examples/batch_size) #随机抽取样本
learning_rate = 0.01
display_step = 1
#优化器
opimizer = tf.train.AdamOptimizer(learning_rate).minimize(loss_function)
#定义准确率
correct_prediction = tf.equal(tf.argmax(y,1),tf.argmax(pred,1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction,tf.float32))
#保存模型
save_step = 5 #储存模型力度
import os
ckpt_dir = '.ckpt_dir/'
if not os.path.exists(ckpt_dir):
os.makedirs(ckpt_dir)
#开始训练
sess = tf.Session()
init = tf.global_variables_initializer()
saver = tf.train.Saver() #声明完所有变量以后,调用tf.train.Saver开始记录
startTime = time()
sess.run(init)
for epochs in range(train_epochs):
for batch in range(total_batch):
xs,ys = mnist.train.next_batch(batch_size)#读取批次数据
sess.run(opimizer,feed_dict={x:xs,y:ys})#执行批次数据训练 #total_batch个批次训练完成后,使用验证数据计算误差与准确率
loss,acc = sess.run([loss_function,accuracy],
feed_dict={
x:mnist.validation.images,
y:mnist.validation.labels})
#输出训练情况
if(epochs+1) % display_step == 0:
epochs += 1
print("Train Epoch:",epochs,
"Loss=",loss,"Accuracy=",acc)
if(epochs+1) % save_step == 0:
saver.save(sess, os.path.join(ckpt_dir,"mnist_h256_model_{:06d}.ckpt".format(epochs+1)))
print("mnist_h256_model_{:06d}.ckpt saved".format(epochs+1))
duration = time()-startTime
print("Trian Finshed takes:","{:.2f}".format(duration))#显示预测耗时
#评估模型
accu_test = sess.run(accuracy,feed_dict={x:mnist.test.images,y:mnist.test.labels})
print("model accuracy:",accu_test)
#恢复模型,创建会话 saver = tf.train.Saver() sess = tf.Session()
init = tf.global_variables_initializer()
sess.run(init) ckpt = tf.train.get_checkpoint_state(ckpt_dir)#选择模型保存路径
if ckpt and ckpt.model_checkpoint_path:
saver.restore(sess ,ckpt.model_checkpoint_path)#从已保存模型中读取参数
print("Restore model from"+ckpt.model_checkpoint_path)
完整代码
基于tensorflow使用全连接层函数实现多层神经网络并保存和读取模型的更多相关文章
- 深度学习原理与框架-卷积网络细节-图像分类与图像位置回归任务 1.模型加载 2.串接新的全连接层 3.使用SGD梯度对参数更新 4.模型结果测试 5.各个模型效果对比
对于图像的目标检测任务:通常分为目标的类别检测和目标的位置检测 目标的类别检测使用的指标:准确率, 预测的结果是类别值,即cat 目标的位置检测使用的指标:欧式距离,预测的结果是(x, y, w, h ...
- 基于tensorflow实现mnist手写识别 (多层神经网络)
标题党其实也不多,一个输入层,三个隐藏层,一个输出层 老样子先上代码 导入mnist的路径很长,现在还记不住 import tensorflow as tf import tensorflow.exa ...
- tensorflow 1.0 学习:池化层(pooling)和全连接层(dense)
池化层定义在 tensorflow/python/layers/pooling.py. 有最大值池化和均值池化. 1.tf.layers.max_pooling2d max_pooling2d( in ...
- tensorflow 添加一个全连接层
对于一个全连接层,tensorflow都为我们封装好了. 使用:tf.layers.dense() tf.layers.dense( inputs, units, activation=None, u ...
- keras channels_last、preprocess_input、全连接层Dense、SGD优化器、模型及编译
channels_last 和 channels_first keras中 channels_last 和 channels_first 用来设定数据的维度顺序(image_data_format). ...
- resnet18全连接层改成卷积层
想要尝试一下将resnet18最后一层的全连接层改成卷积层看会不会对网络效果和网络大小有什么影响 1.首先先对train.py中的更改是: train.py代码可见:pytorch实现性别检测 # m ...
- Caffe源码阅读(1) 全连接层
Caffe源码阅读(1) 全连接层 发表于 2014-09-15 | 今天看全连接层的实现.主要看的是https://github.com/BVLC/caffe/blob/master/src ...
- 深度学习基础系列(十)| Global Average Pooling是否可以替代全连接层?
Global Average Pooling(简称GAP,全局池化层)技术最早提出是在这篇论文(第3.2节)中,被认为是可以替代全连接层的一种新技术.在keras发布的经典模型中,可以看到不少模型甚至 ...
- TensorFlow------单层(全连接层)实现手写数字识别训练及测试实例
TensorFlow之单层(全连接层)实现手写数字识别训练及测试实例: import tensorflow as tf from tensorflow.examples.tutorials.mnist ...
随机推荐
- NHibernate出现could not execute query问题
今天在调试代码时工程总报错,提示could not execute query xxxxxxxxxxxxxxxxxxxxxxxxxxx 找了很久,最终同事发现是数据库连接配置文件的问题. <hi ...
- October 25th, 2017 Week 43rd Wednesday
Perseverance is not a long race; it is many short races one after another. 坚持不是一个长跑,她是很多一个接一个的短跑. To ...
- Mac如何搭建 配置 virtualenv python虚拟环境(超级详细,适合小白)
首先去python官网 下载python3的 安装包安装: https://www.python.org/ftp/python/3.6.5/python-3.6.5-macosx10.9.pkg 安装 ...
- DevExpress09、SimpleButton、CheckButton、DropDownButton、HScrollBar控件和VScrollBar控件
SimpleButton控件 使用SimpleButton控件, 创建一个Button按钮, 可以通过其Image属性添加图片: 该控件与WinForm自带的Button按钮类似: 效果如下: Che ...
- Pyspider抓取静态页面
近期,我想爬一批新闻资讯的内容.新闻类型的网址很多,我想看看有没有一个网页上能包罗尽可能多的新闻网站呢,于是就发现了下面这个网页 http://news.hao123.com/wangzhi 这个页面 ...
- Python2.7-dbm、gdbm、dbhash、bsddb、dumbdb
dbm.gdbm.dbhash.bsddb.dumbdb模块,都是操作数据库文件的模块,打开后都会返回对应数据库类型对象,类似字典,有许多操作和字典操作相同,键和值都是以字符串形式保存.dbm 是简单 ...
- JAVA框架 Spring AOP--切入点表达式和通知类型
一:AOP的相关术语: 1)Joinpoint(连接点):所谓的连接点是指那些可以被拦截点,在spring中这些点是指方法.因为在spring中支持方法类型的连接点. 2)Pointcut(切入点): ...
- SQL 登录名 用户 角色
参考博客:http://www.cnblogs.com/ChineseMoonGod/p/5860449.html,非常感谢博主的知识分享. 1.创建一个登录名,完全操作数据库权限,步骤为:创建登录名 ...
- day36
今日内容 1.GIL解释器锁 2.GIL解释器锁与自定义锁 3.死锁现象与递归锁 4.信息量 5.Event 6.线程queue 1.GIL解释器锁 from multiprocessing impo ...
- log下一次坑爹的疏忽
今天调试一段十几行的代码,也让我是一顿咒骂...就说说是怎么回事哈哈. 是这样的,这个页面foreach了一个个的div块,每个div里有个a标签,这个按钮绑定了个点击事件.事件走了个ajax,根据返 ...