Luogu4717 【模板】快速沃尔什变换(FWT)
https://www.cnblogs.com/RabbitHu/p/9182047.html
完全没有学证明的欲望因为这个实在太好写了而且FFT就算学过也忘得差不多了只会写板子
#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstring>
#include<cstdlib>
#include<algorithm>
using namespace std;
#define N (1<<17)
#define P 998244353
#define inv2 499122177
int read()
{
int x=,f=;char c=getchar();
while (c<''||c>'') {if (c=='-') f=-;c=getchar();}
while (c>=''&&c<='') x=(x<<)+(x<<)+(c^),c=getchar();
return x*f;
}
int n,a[N],b[N],f[N],g[N];
void OR(int *a,int n,int op)
{
for (int i=;i<=n;i<<=)
for (int j=;j<n;j+=i)
for (int k=j;k<j+(i>>);k++)
{
int x=a[k],y=a[k+(i>>)];
if (op==) a[k]=x,a[k+(i>>)]=(x+y)%P;
else a[k]=x,a[k+(i>>)]=(y-x+P)%P;
}
}
void AND(int *a,int n,int op)
{
for (int i=;i<=n;i<<=)
for (int j=;j<n;j+=i)
for (int k=j;k<j+(i>>);k++)
{
int x=a[k],y=a[k+(i>>)];
if (op==) a[k]=(x+y)%P,a[k+(i>>)]=y;
else a[k]=(x-y+P)%P,a[k+(i>>)]=y;
}
}
void XOR(int *a,int n,int op)
{
for (int i=;i<=n;i<<=)
for (int j=;j<n;j+=i)
for (int k=j;k<j+(i>>);k++)
{
int x=a[k],y=a[k+(i>>)];
a[k]=(x+y)%P,a[k+(i>>)]=(x-y+P)%P;
if (op==) a[k]=1ll*a[k]*inv2%P,a[k+(i>>)]=1ll*a[k+(i>>)]*inv2%P;
}
}
void FWT(int *a,int *b,int n,int op)
{
if (op==) OR(a,n,),OR(b,n,);
else if (op==) AND(a,n,),AND(b,n,);
else if (op==) XOR(a,n,),XOR(b,n,);
for (int i=;i<n;i++) a[i]=1ll*a[i]*b[i]%P;
if (op==) OR(a,n,);
else if (op==) AND(a,n,);
else if (op==) XOR(a,n,);
for (int i=;i<n;i++) printf("%d ",f[i]);cout<<endl;
}
int main()
{
freopen("FWT.in","r",stdin);
freopen("FWT.out","w",stdout);
n=<<read();
for (int i=;i<n;i++) a[i]=read();
for (int i=;i<n;i++) b[i]=read();
memcpy(f,a,sizeof(f));memcpy(g,b,sizeof(g));
FWT(f,g,n,);
memcpy(f,a,sizeof(f));memcpy(g,b,sizeof(g));
FWT(f,g,n,);
memcpy(f,a,sizeof(f));memcpy(g,b,sizeof(g));
FWT(f,g,n,);
return ;
}
Luogu4717 【模板】快速沃尔什变换(FWT)的更多相关文章
- 洛谷.4717.[模板]快速沃尔什变换(FWT)
题目链接 https://www.mina.moe/archives/7598 //285ms 3.53MB #include <cstdio> #include <cctype&g ...
- 一个数学不好的菜鸡的快速沃尔什变换(FWT)学习笔记
一个数学不好的菜鸡的快速沃尔什变换(FWT)学习笔记 曾经某个下午我以为我会了FWT,结果现在一丁点也想不起来了--看来"学"完新东西不经常做题不写博客,就白学了 = = 我没啥智 ...
- 快速沃尔什变换FWT
快速沃尔什变换\(FWT\) 是一种可以快速完成集合卷积的算法. 什么是集合卷积啊? 集合卷积就是在集合运算下的卷积.比如一般而言我们算的卷积都是\(C_i=\sum_{j+k=i}A_j*B_k\) ...
- 集合并卷积的三种求法(分治乘法,快速莫比乌斯变换(FMT),快速沃尔什变换(FWT))
也许更好的阅读体验 本文主要内容是对武汉市第二中学吕凯风同学的论文<集合幂级数的性质与应用及其快速算法>的理解 定义 集合幂级数 为了更方便的研究集合的卷积,引入集合幂级数的概念 集合幂级 ...
- 【学习笔鸡】快速沃尔什变换FWT
[学习笔鸡]快速沃尔什变换FWT OR的FWT 快速解决: \[ C[i]=\sum_{j|k=i} A[j]B[k] \] FWT使得我们 \[ FWT(C)=FWT(A)*FWT(B) \] 其中 ...
- 关于快速沃尔什变换(FWT)的一点学习和思考
最近在学FWT,抽点时间出来把这个算法总结一下. 快速沃尔什变换(Fast Walsh-Hadamard Transform),简称FWT.是快速完成集合卷积运算的一种算法. 主要功能是求:,其中为集 ...
- 快速沃尔什变换 FWT 学习笔记【多项式】
〇.前言 之前看到异或就担心是 FWT,然后才开始想别的. 这次学了 FWT 以后,以后判断应该就很快了吧? 参考资料 FWT 详解 知识点 by neither_nor 集训队论文 2015 集合幂 ...
- Codeforces 662C(快速沃尔什变换 FWT)
感觉快速沃尔什变换和快速傅里叶变换有很大的区别啊orz 不是很明白为什么位运算也可以叫做卷积(或许不应该叫卷积吧) 我是看 http://blog.csdn.net/liangzhaoyang1/ar ...
- 快速沃尔什变换(FWT)学习笔记 + 洛谷P4717 [模板]
FWT求解的是一类问题:\( a[i] = \sum\limits_{j\bigoplus k=i}^{} b[j]*c[k] \) 其中,\( \bigoplus \) 可以是 or,and,xor ...
- 洛谷P4717 【模板】快速沃尔什变换(FWT)
题意 题目链接 Sol 背板子背板子 #include<bits/stdc++.h> using namespace std; const int MAXN = (1 << 1 ...
随机推荐
- WebView之禁止调用第三方浏览器
一.WebView官方简洁: 一个显示视图的web页面.在这个类的基础上你可以滚自己的web浏览器或简单地显示一些网上的内容.它使用WebKit渲染引擎显示web页面,包括方法向前和向后导航历史,放大 ...
- AbelSu的区块链笔记
最近几年,像比特币.以太坊.ICO.区块链等概念突然成为互联网热门话题,今天写这篇博客,也是做一些笔记,大概说一下对这个的解释和其他相关内容. 区块链: 区块链是分布式数据存储.点对点传输.共识机制. ...
- 在 ASP.NET CORE 中使用 SESSION (转载)
Session 是保存用户和 Web 应用的会话状态的一种方法,ASP.NET Core 提供了一个用于管理会话状态的中间件.在本文中我将会简单介绍一下 ASP.NET Core 中的 Session ...
- WPF XML序列化保存数据 支持Datagrid 显示/编辑/添加/删除数据
XML序列化保存数据 using System; using System.Collections.Generic; using System.Linq; using System.Text; usi ...
- mfc CSpinButton
知识点: CSliderCtrl(滑块)控件 CSliderCtrl常用属性 CSliderCtrl类常用成员函数 CSliderCtrl运用示例 一.CSliderCtr常用属性 Orientati ...
- SQLAlchemy 与 fask-SQLAlchemy 中的多表查询例子
我们知道,<学生.课程.选课>,是一个典型的多对多关系. 现分别用 SQLAlchemy 与 fask-SQLAlchemy 实现. 声明:本人实测通过. 使用 SQLAlchemy fr ...
- TMS320VC5509使用nof flash AM29LV400
1. 硬件接口如下,其中nor flash的使用方法,写的时候和NAND FLASH是一样的,读的时候和DRAM是一样的 2. 看下擦除指令和编程指令 3. 代码如下 #include <csl ...
- POJ1094——拓扑排序和它的唯一性
比较模板的topological-sort题,关键在于每个元素都严格存在唯一的大小关系,而一般的拓扑排序只给出一个可能解,这就需要每趟排序的过程中监视它是不是总坚持一条唯一的路径. 算法导论里面的拓扑 ...
- android studio 下载 sdk 失败
android studio 打开项目出现以下错误时,点击去安装,会提示"All packages are not available for download" 错误. 解决办法 ...
- mongodb分片集群
第一章 1.mongodb 分片集群解释和目的 一组Mongodb复制集,就是一组mongod进程,这些进程维护同一个数据集合.复制集提供了数据冗余和高等级的可靠性,这是生产部署的基础. 第二章 1. ...