题意

\(t\) 组询问,给你 \(A, B, C\) ,问有多少组三元组 \((a, b, c)\) 满足他们任意排列后有: \(a|A,\ b|B,\ c|C\) 。

\(A,B,C,t\leq 10^5\)

分析

  • 我们把三个数的所有因子用 \(2^3 - 1\) 个状态表示这个数是 \(A,B,C\) 中的哪几个数字的因子。

  • 按照从小到大的顺序枚举3个数对应的集合,首先保证能够找到一种对应方式(每个数对应是谁的因子),相同的数集利用插板法计算方案避免重复。

代码

#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
#include<cctype>
#include<vector>
#include<queue>
#define For(s) for(int s=1;s<8;s++)
using namespace std;
const int N=1e5 + 7;
typedef long long LL;
int n,T;
int sz[8],A[8],f[8],b[8]={0,1,1,2,1,2,2,3};
LL ans,tmp;
int gcd(int a,int b){
if(!b) return a;
return gcd(b,a%b);
}
int get(int x){
int res=0;
for(int i=1;i<=sqrt(x);i++)if(x%i==0){
res++;
if(i*i!=x) res++;
}
return res;
}
bool check(int a,int b,int c){
if((a&1) && (b&2) && (c&4)
return true;
if((a&1) && (c&2) && (b&4))
return true;
if((b&1) && (a&2) && (c&4))
return true;
if((b&1) && (c&2) && (a&4))
return true;
if((c&1) && (a&2) && (b&4))
return true;
if((c&1) && (b&2) && (a&4))
return true;
return false;
}
LL C(int n,int m){
if (m == 0) return 1;
if (m == 1) return n;
if (m == 2) return 1ll * n * (n - 1) / 2;
if (m == 3) return 1ll * n * (n - 1) * (n - 2) / 6;
}
void work(){
scanf("%d%d%d",&A[0],&A[1],&A[2]);
ans=0; memset(sz,0,sizeof(sz));
memset(f,0,sizeof(f));
For(S){
for(int i=0;i<3;i++) if(S>>i&1){
if(!f[S]) f[S]=A[i];
else f[S]=gcd(f[S],A[i]);
}
f[S]=get(f[S]);
}
For(s) For(S)if((S&s)==s){
int cnt=b[S]-b[s];
sz[s]+=f[S]*(cnt&1?-1:1);
}
For(s1)for(int s2=s1;s2<8;s2++)for(int s3=s2;s3<8;s3++){
if(check(s1,s2,s3)){
tmp=1;int cnt=1,cho=233;
if(s1==s2) cho=s1,cnt++;
if(s2==s3) cho=s2,cnt++;
if(s1^cho) tmp*=sz[s1];
if(s2^cho) tmp*=sz[s2];
if(s3^cho) tmp*=sz[s3];
if(cnt^1) tmp*=C(sz[cho]+cnt-1,cnt);
ans+=tmp;
}
}
printf("%lld\n",ans);
}
int main(){
scanf("%d",&T);
while(T--) work();
return 0;
}

[CF1007B]Pave the Parallelepiped[组合计数+状态压缩]的更多相关文章

  1. 2021蓝桥杯省赛C++A组试题E 回路计数 状态压缩DP详细版

    2021蓝桥杯省赛C++A组试题E 回路计数 状态压缩DP 题目描述 蓝桥学院由21栋教学楼组成,教学楼编号1到21.对于两栋教学楼a和b,当a和b互质时,a和b之间有一条走廊直接相连,两个方向皆可通 ...

  2. CF1007B Pave the Parallelepiped 容斥原理

    Pave the Parallelepiped time limit per test 2 seconds memory limit per test 256 megabytes input stan ...

  3. HDU 4921 Map DFS+状态压缩+乘法计数

    算最多十条链,能截取某前缀段,每种方案都可以算出一个权值,每种方案的概率都是总数分之一,问最后能构成的所有可能方案数. 对计数原理不太敏感,知道是DFS先把链求出来,但是想怎么统计方案的时候想了好久, ...

  4. POJ 3254. Corn Fields 状态压缩DP (入门级)

    Corn Fields Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 9806   Accepted: 5185 Descr ...

  5. POJ3254Corn Fields(状态压缩DP入门)

    题目链接 题意:一个矩阵里有很多格子,每个格子有两种状态,可以放牧和不可以放牧,可以放牧用1表示,否则用0表示,在这块牧场放牛,要求两个相邻的方格不能同时放牛,即牛与牛不能相邻.问有多少种放牛方案(一 ...

  6. HDU4628+状态压缩DP

    /* 状态压缩DP dp[ i ]:达到i状态的最小step. 题意:每次可以去掉一个回文串,求最少几步能取完. */ #include<stdio.h> #include<stri ...

  7. hdu4670(树上点分治+状态压缩)

    树上路径的f(u,v)=路径上所有点的乘积. 树上每个点的权值都是由给定的k个素数组合而成的,如果f(u,v)是立方数,那么就说明f(u,v)是可行的方案. 问有多少种可行的方案. f(u,v)可是用 ...

  8. 状态压缩dp入门

    poj1321 http://poj.org/problem?id=1321 我们可以把棋盘的每一行看做是一个状态,如果某一列放置了棋子,那么就标记为1,否则就标记为0.然后把它看成是一个二进制数,然 ...

  9. HDU 5768 Lucky7 (容斥原理 + 中国剩余定理 + 状态压缩 + 带膜乘法)

    题意:……应该不用我说了,看起来就很容斥原理,很中国剩余定理…… 方法:因为题目中的n最大是15,使用状态压缩可以将所有的组合都举出来,然后再拆开成数组,进行中国剩余定理的运算,中国剩余定理能够求出同 ...

随机推荐

  1. LeetCode题解之Merge Two Sorted Lists

    1.题目描述 2.题目分析 题目要求合并有序的两个链表,要求不能额外申请空间. 3.代码 ListNode* mergeTwoLists(ListNode* l1, ListNode* l2) { i ...

  2. heckboxlist详细用法、checkboxlist用法、checkboxlist

    heckboxlist详细用法.checkboxlist用法.checkboxlist for (int i = 0; i < CheckBoxList1.Items.Count; i++) { ...

  3. WebStorm 中 dva 项目用 start 命令需要不断重启项目问题

    问题: 用dva-cli 构建的项目,用webstorm进行开发,通过 npm start进行启动,经常修改了文件之后,浏览器里面的内容没有刷新,需要重新执行npm start才行. 解决办法: we ...

  4. pychram使用技巧

    1.代码添加断点 点击对应行代码,按ctrl+F8,即可添加断点 2.查看内置函数的源码 点击对应函数后按crtl+B

  5. chrome浏览器访问Google的插件“谷歌访问插件”以及常用插件

    1.解决新版谷歌浏览器无法从该网站添加应用.拓展程序和用户脚本 1.在Google Chrome浏览器的桌面快捷方式上鼠标右键,选择属性(R). 2. 在目标(T)后添加参数   --enable-e ...

  6. iptables设置规则

    iptables -A INPUT -s 127.0.0.1 -p tcp --dport 8080 -j ACCEPT  添加到最后一条iptables -I INPUT -p tcp --dpor ...

  7. JAVA内存管理 [转]

    首先我们要明白一点,我们所使用的变量就是一块一块的内存空间!!   一.内存管理原理:   在java中,有java程序.虚拟机.操作系统三个层次,其中java程序与虚拟机交互,而虚拟机与操作系统间交 ...

  8. 夯实基础之--new关键字、instanceOf原理

    1.instanceOf原理  检测右边构造函数的prototype是否在左边对象的原型链上,在返回true,不在返回false 例:function  Persion(name,age){ this ...

  9. Odoo作为App后端时如何调试App

    转载请注明原文地址:https://www.cnblogs.com/cnodoo/p/9307340.html  一:Odoo可以作为app后台+后台管理系统使用 Odoo作为一个可供二次开发的框架, ...

  10. Locust环境搭建及应用-hc课堂笔记

    Locust环境搭建: 1,在命令窗口中,进入到python项目路径,如:d:\Pycharmproject\venv\Scripts 2,执行Scripts下的active.bat,进入到虚拟环境 ...