mapreduce中控制mapper的数量
很多文档中描述,Mapper的数量在默认情况下不可直接控制干预,因为Mapper的数量由输入的大小和个数决定。在默认情况下,最终input占据了多少block,就应该启动多少个Mapper。如果输入的文件数量巨大,但是每个文件的size都小于HDFS的blockSize,那么会造成启动的Mapper等于文件的数量(即每个文件都占据了一个block),那么很可能造成启动的Mapper数量超出限制而导致崩溃。这些逻辑确实是正确的,但都是在默认情况下的逻辑。其实如果进行一些客户化的设置,就可以控制了。
在Hadoop中,设置Map task的数量不像设置Reduce task数量那样直接,即:不能够通过API直接精确的告诉Hadoop应该启动多少个Map task。
你也许奇怪了,在API中不是提供了接口org.apache.hadoop.mapred.JobConf.setNumMapTasks(int n)吗?这个值难道不可以设置Map task的数量吗?这个API的确没错,在文档上解释”Note: This is only a hint to the framework.“,即这个值对Hadoop的框架来说仅仅是个提示,不起决定性的作用。也就是说,即便你设置了,也不一定得到你想要的效果。
1. InputFormat介绍
在具体设置Map task数量之前,非常有必要了解一下与Map-Reduce输入相关的基础知识。
这个接口(org.apache.hadoop.mapred.InputFormat)描述了Map-Reduce job的输入规格说明(input-specification),它将所有的输入文件分割成逻辑上的InputSplit,每一个InputSplit将会分给一个单独的mapper;它还提供RecordReader的具体实现,这个Reader从逻辑的InputSplit上获取input records并传给Mapper处理。
InputFormat有多种具体实现,诸如FileInputFormat(处理基于文件的输入的基础抽象类), DBInputFormat(处理基于数据库的输入,数据来自于一个能用SQL查询的表),KeyValueTextInputFormat(特殊的FineInputFormat,处理Plain Text File,文件由回车或者回车换行符分割成行,每一行由key.value.separator.in.input.line分割成Key和Value),CompositeInputFormat,DelegatingInputFormat等。在绝大多数应用场景中都会使用FileInputFormat及其子类型。
通过以上的简单介绍,我们知道InputFormat决定着InputSplit,每个InputSplit会分配给一个单独的Mapper,因此InputFormat决定了具体的Map task数量。
2. FileInputFormat中影响Map数量的因素
在日常使用中,FileInputFormat是最常用的InputFormat,它有很多具体的实现。以下分析的影响Map数量的因素仅对FileInputFormat及其子类有效,其他非FileInputFormat可以去查看相应的 getSplits(JobConf job, int numSplits) 具体实现即可。
请看如下代码段(摘抄自org.apache.hadoop.mapred.FileInputFormat.getSplits,hadoop-0.20.205.0源代码):
- long goalSize = totalSize / (numSplits == 0 ? 1 : numSplits);
- long minSize = Math.max(job.getLong("mapred.min.split.size", 1), minSplitSize);
- for (FileStatus file: files) {
- Path path = file.getPath();
- FileSystem fs = path.getFileSystem(job);
- if ((length != 0) && isSplitable(fs, path)) {
- long blockSize = file.getBlockSize();
- long splitSize = computeSplitSize(goalSize, minSize, blockSize);
- long bytesRemaining = length;
- while (((double) bytesRemaining)/splitSize > SPLIT_SLOP) {
- String[] splitHosts = getSplitHosts(blkLocations,length-bytesRemaining, splitSize, clusterMap);
- splits.add(new FileSplit(path, length-bytesRemaining, splitSize, splitHosts));
- bytesRemaining -= splitSize;
- }
- if (bytesRemaining != 0) {
- splits.add(new FileSplit(path, length-bytesRemaining, bytesRemaining, blkLocations[blkLocations.length-1].getHosts()));
- }
- } else if (length != 0) {
- String[] splitHosts = getSplitHosts(blkLocations,0,length,clusterMap);
- splits.add(new FileSplit(path, 0, length, splitHosts));
- } else {
- //Create empty hosts array for zero length files
- splits.add(new FileSplit(path, 0, length, new String[0]));
- }
- }
- return splits.toArray(new FileSplit[splits.size()]);
- protected long computeSplitSize(long goalSize, long minSize, long blockSize) {
- return Math.max(minSize, Math.min(goalSize, blockSize));
- }
totalSize:是整个Map-Reduce job所有输入的总大小。
numSplits:来自job.getNumMapTasks(),即在job启动时用org.apache.hadoop.mapred.JobConf.setNumMapTasks(int n)设置的值,给M-R框架的Map数量的提示。
goalSize:是输入总大小与提示Map task数量的比值,即期望每个Mapper处理多少的数据,仅仅是期望,具体处理的数据数由下面的computeSplitSize决定。
minSplitSize:默认为1,可由子类复写函数protected void setMinSplitSize(long minSplitSize) 重新设置。一般情况下,都为1,特殊情况除外。
minSize:取的1和mapred.min.split.size中较大的一个。
blockSize:HDFS的块大小,默认为64M,一般大的HDFS都设置成128M。
splitSize:就是最终每个Split的大小,那么Map的数量基本上就是totalSize/splitSize。
接下来看看computeSplitSize的逻辑:首先在goalSize(期望每个Mapper处理的数据量)和HDFS的block size中取较小的,然后与mapred.min.split.size相比取较大的。
3. 如何调整Map的数量
有了2的分析,下面调整Map的数量就很容易了。
3.1 减小Map-Reduce job 启动时创建的Mapper数量
当处理大批量的大数据时,一种常见的情况是job启动的mapper数量太多而超出了系统限制,导致Hadoop抛出异常终止执行。解决这种异常的思路是减少mapper的数量。具体如下:
3.1.1 输入文件size巨大,但不是小文件
这种情况可以通过增大每个mapper的input size,即增大minSize或者增大blockSize来减少所需的mapper的数量。增大blockSize通常不可行,因为当HDFS被hadoop namenode -format之后,blockSize就已经确定了(由格式化时dfs.block.size决定),如果要更改blockSize,需要重新格式化HDFS,这样当然会丢失已有的数据。所以通常情况下只能通过增大minSize,即增大mapred.min.split.size的值。
3.1.2 输入文件数量巨大,且都是小文件
所谓小文件,就是单个文件的size小于blockSize。这种情况通过增大mapred.min.split.size不可行,需要使用FileInputFormat衍生的CombineFileInputFormat将多个input path合并成一个InputSplit送给mapper处理,从而减少mapper的数量。具体细节稍后会更新并展开。
3.2 增加Map-Reduce job 启动时创建的Mapper数量
增加mapper的数量,可以通过减小每个mapper的输入做到,即减小blockSize或者减小mapred.min.split.size的值。
参考资料
http://yaseminavcular.blogspot.com/2011/06/how-to-set-number-of-maps-with-hadoop.html
http://svn.apache.org/repos/asf/hadoop/common/tags/release-0.20.205.0
mapreduce中控制mapper的数量的更多相关文章
- 深度分析如何在Hadoop中控制Map的数量
深度分析如何在Hadoop中控制Map的数量 guibin.beijing@gmail.com 很多文档中描述,Mapper的数量在默认情况下不可直接控制干预,因为Mapper的数量由输入的大小和个数 ...
- 深度分析如何在Hadoop中控制Map的数量(摘抄)
很多文档中描述,Mapper的数量在默认情况下不可直接控制干预,因为Mapper的数量由输入的大小和个数决定.在默认情况下,最终input占据了多少block,就应该启动多少个Mapper.如果输入的 ...
- 【Hadoop】三句话告诉你 mapreduce 中MAP进程的数量怎么控制?
1.果断先上结论 1.如果想增加map个数,则设置mapred.map.tasks 为一个较大的值. 2.如果想减小map个数,则设置mapred.min.split.size 为一个较大的值. 3. ...
- [Hadoop源码解读](二)MapReduce篇之Mapper类
前面在讲InputFormat的时候,讲到了Mapper类是如何利用RecordReader来读取InputSplit中的K-V对的. 这一篇里,开始对Mapper.class的子类进行解读. 先回忆 ...
- Hadoop学习之路(二十三)MapReduce中的shuffle详解
概述 1.MapReduce 中,mapper 阶段处理的数据如何传递给 reducer 阶段,是 MapReduce 框架中 最关键的一个流程,这个流程就叫 Shuffle 2.Shuffle: 数 ...
- go中控制goroutine数量
控制goroutine数量 前言 控制goroutine的数量 通过channel+sync 使用semaphore 线程池 几个开源的线程池的设计 fasthttp中的协程池实现 Start Sto ...
- MapReduce中的partitioner
1.日志源文件: 1363157985066 13726230503 00-FD-07-A4-72-B8:CMCC 120.196.100.82 i02.c.aliimg.com 24 27 2481 ...
- Hadoop案例(七)MapReduce中多表合并
MapReduce中多表合并案例 一.案例需求 订单数据表t_order: id pid amount 1001 01 1 1002 02 2 1003 03 3 订单数据order.txt 商品信息 ...
- hadoop学习第四天-Writable和WritableComparable序列化接口的使用&&MapReduce中传递javaBean的简单例子
一. 为什么javaBean要继承Writable和WritableComparable接口? 1. 如果一个javaBean想要作为MapReduce的key或者value,就一定要实现序列化,因为 ...
随机推荐
- Expo大作战(八)--expo中的publish以及expo中的link,对link这块东西没有详细看,大家可以来和我交流
简要:本系列文章讲会对expo进行全面的介绍,本人从2017年6月份接触expo以来,对expo的研究断断续续,一路走来将近10个月,废话不多说,接下来你看到内容,将全部来与官网 我猜去全部机翻+个人 ...
- 【SPL标准库专题(9)】 Datastructures:SplObjectStorage
PHP SPL SplObjectStorage是用来存储一组对象的,特别是当你需要唯一标识对象的时候. PHP SPL SplObjectStorage类实现了Countable,Iterator, ...
- fab提供远程IP和账号密码
#!/usr/bin/python #-*- coding: UTF-8 -*- from fabric.api import * from fabric.context_managers impor ...
- Java入门系列:实例讲解ArrayList用法
本文通过实例讲解Java中如何使用ArrayList类. Java.util.ArrayList类是一个动态数组类型,也就是说,ArrayList对象既有数组的特征,也有链表的特征.可以随时从链表中添 ...
- 系统升级win7 sp1后,ado,MSJRO.tlh error 问题
MSJRO.tlh() : error C2501: '_RecordsetPtr' : missing storage-class or type specifiers MSJRO.tlh() : ...
- aspnet_regiis.exe -i 报 “此操作系统版本不支持此选项”
解决方法: 控制面板 - 程序和功能 - 启动或关闭windows功能 - Internet Information services - 万维网服务 - 应用程序开发功能 勾选: 1.ASP.NET ...
- 团队作业——Alpha冲刺 5/12
团队作业--Alpha冲刺 冲刺任务安排 杨光海天 今日任务:编辑界面完成部分内容,学习了下拉菜单控件的建立,完善界面标题内容,以及交互. 明日任务:继续完善编辑界面,学习使用gallery,着手配图 ...
- Django商城项目笔记No.5用户部分-注册接口-短信验证码
Django商城项目笔记No.4用户部分-注册接口-短信验证码 短信验证码也保存在redis里(sms_code_15101234567) 在views中新增SMSCodeView类视图,并且写出步骤 ...
- Mapreduce运行过程分析(基于Hadoop2.4)——(二)
4.3 Map类 创建Map类和map函数.map函数是org.apache.hadoop.mapreduce.Mapper类中的定义的,当处理每一个键值对的时候,都要调用一次map方法,用户须 ...
- [测试] Markdown+Latex
标题 标题 标题 标题 标题 标题 #include <cstdio> #define R register int #define I inline void #define IL in ...