Body Building

题目连接:

https://icpcarchive.ecs.baylor.edu/index.php?option=com_onlinejudge&Itemid=8&page=show_problem&problem=4919

Description

Bowo is fed up with his body shape. He has a tall posture, but he’s very skinny. No matter how much

he eats, he never gains any weight. Even though he is a computer geek (and he loves it), he wants

a pretty and non-geek girlfriend. Unfortunately, most girls in his surrounding do not like skinny and

unattractive guy. Therefore, Bowo has decided to gain some muscles in his body; he joined a fitness

club and begun to do some body building exercises.

There are a lot of exercise equipments in a fitness club, and usually there should be weightlifting

equipments such as barbell and dumbbell (barbell with shorter rod). Upon seeing a dumbbell, Bowo

cannot help but imagining graphs which are similar to a dumbbell. A graph — which later referred as

“connected component” — of N nodes is called a dumbbell if it fulfills all the following conditions:

(i) All nodes in the graph can be partitioned into two disjoint sets P and Q which have equal size,

i.e. N/2 nodes each.

(ii) Both induced subgraph of P and Q are complete graphs.

(iii) P and Q are connected by exactly one edge.

Informally, a dumbbell is obtained by connecting two equal size complete graphs with an edge.

For example, consider graph A in Figure 1 with 10 nodes and 21 edges. There are two disjoint

complete graphs of size 5 which are connected by an edge. Therefore, this graph is a dumbbell. Graph

B and C are also dumbbells. Graph D, on the other hand, is not.

Figure 1.

Given a graph (which might be disconnected), determine how many connected components which

are dumbbells. A connected component is a connected subgraph which no vertex can be added and

still be connected.

Input

The first line of input contains an integer T (T ≤ 50) denoting the number of cases. Each case begins

with two integers: N and M (1 ≤ N ≤ 100; 0 ≤ M ≤ 4, 950) denoting the number of nodes and edges

in the graph respectively. The nodes are numbered from 1 to N. The following M lines each contains

two integer: a and b (1 ≤ a, b ≤ N; a ̸= b) representing an undirected edge connecting node a and node

b. You are guaranteed that each pair of nodes has at most one edge in the graph.

Output

For each case, output ‘Case #X: Y ’, where X is the case number starts from 1 and Y is the number

of connected components which are dumbbells for the respective case.

Explanation for 1st sample case:

There is only one node in the graph; a dumbbell requires at least two nodes.

Explanation for 2nd sample case:

Both connected components are dumbbells: {1, 2} and {3, 4}.

Explanation for 3rd sample case:

There are two connected components: {1, 2, 3, 4, 5, 6}, and {7, 8, 9, 10}, and both of them are

dumbbells. The first one is dumbbell with complete graph of size 3, while the second one has size of 2.

Explanation for 4th sample case:

There are four connected components: {1, 2}, {3, 4}, {5, 6} and {7, 8, 9}. Only the first three are

dumbbells.

Sample Input

4

1 0

4 2

1 2

3 4

10 10

1 2

1 3

2 3

3 4

4 5

5 6

4 6

7 8

8 9

9 10

9 5

1 2

3 4

5 6

7 8

8 9

Sample Output

Case #1: 0

Case #2: 2

Case #3: 2

Case #4: 3

Hint

题意

给你个无向图,问里面有多少个子图,满足里面可以分成P,Q两个连通块,且这两个PQ都是完全图,且两个图都由一条边连接,且俩完全图的size相同。

题解:

跑桥,然后看看桥两边的连通块长什么样子,然后特判断一下4个点的情况……

代码

#include <bits/stdc++.h>
#define rep(a,b,c) for(int (a)=(b);(a)<=(c);++(a))
#define drep(a,b,c) for(int (a)=(b);(a)>=(c);--(a))
#define pb push_back
#define mp make_pair
#define sf scanf
#define pf printf
#define two(x) (1<<(x))
#define clr(x,y) memset((x),(y),sizeof((x)))
#define dbg(x) cout << #x << "=" << x << endl;
#define lowbit(x) ((x)&(-x))
const int mod = 1e9 + 7;
int mul(int x,int y){return 1LL*x*y%mod;}
int qpow(int x , int y){int res=1;while(y){if(y&1) res=mul(res,x) ; y>>=1 ; x=mul(x,x);} return res;}
inline int read(){int x=0,f=1;char ch=getchar();while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();}while(ch>='0'&&ch<='9'){x=x*10+ch-'0';ch=getchar();}return x*f;}
using namespace std;
const int maxn = 100 + 15;
int mat[maxn][maxn],N,M,vis[maxn],low[maxn],dfn[maxn],ti,label[maxn],rt,head[maxn],tot,sz[maxn];
vector < int > block,dcc[maxn];
stack < int > sp; struct edge{
int v , nxt , isbrige;
}e[maxn * maxn * 5]; void dfs( int x ){
if( vis[x] ) return ;
vis[x] = 1;
block.pb( x );
for(int i = head[x] ; ~i ; i = e[i].nxt){
int v = e[i].v;
dfs( v );
}
} void predfs( int x , int pr ){
dfn[x] = low[x] = ++ ti;
sp.push( x );
for(int i = head[x] ; ~i ; i = e[i].nxt){
int v = e[i].v;
if( i == ( pr ^ 1 ) ) continue;
if( !dfn[v] ){
predfs( v , i );
low[x] = min( low[x] , low[v] );
if( low[v] > dfn[x] ) e[i].isbrige = e[i ^ 1].isbrige = 1;
}else if( dfn[v] < dfn[x] ) low[x] = min( low[x] , dfn[v] );
}
if( low[x] == dfn[x] ){
int u;
++ rt;
do{
u = sp.top() ; sp.pop();
label[u] = rt;
}while( u != x );
}
} bool judge( vector < int > & a ){
for(int i = 0 ; i < a.size() ; ++ i)
for(int j = i + 1 ; j < a.size() ; ++ j)
if( mat[a[i]][a[j]] == 0 )
return false;
return true;
} int solve( int base ){
block.clear();
dfs( base );
if( block.size() == 4 ){
vector < int > dp;
for( auto it : block ) dp.pb( sz[it] );
sort( dp.begin() , dp.end() );
if( dp[0] == 1 && dp[1] == 1 && dp[2] == 2 && dp[3] == 2 ) return true;
return false;
}
ti = rt = 0;
predfs( base , 999999999 ); int bridgenum = 0;
for(auto it : block){
for(int i = head[it] ; ~i ; i = e[i].nxt) if( e[i].isbrige ) ++ bridgenum;
}
bridgenum >>= 1;
if( bridgenum == 0 || bridgenum > 3 ) return 0;
if( (int)block.size() & 1 ) return 0;
for(int i = 1 ; i <= rt ; ++ i) dcc[i].clear();
for(auto it : block) dcc[label[it]].pb( it );
if( bridgenum == 1 ){
if( dcc[1].size() != dcc[2].size() ) return 0 ;
if( !judge(dcc[1]) || !judge( dcc[2] )) return 0;
}else if( bridgenum == 2 ){
return 0;
}else if( bridgenum == 3 ){
if( block.size() != 4 ) return 0;
}
return 1;
} void link( int u , int v ){
e[tot].isbrige=0,e[tot].v=v,e[tot].nxt=head[u],head[u]=tot++;
} int main(int argc,char *argv[]){
int T=read(),cas=0;
while(T--){
N=read(),M=read();
rep(i,1,N) rep(j,1,N) mat[i][j]=0;
clr(head,-1);
clr(sz,0);
clr(label,0);
clr(dfn,0);
clr( vis , 0 );
tot = 0;
rep(i,1,M){
int u , v ;
sf("%d%d",&u,&v);
mat[u][v] = mat[v][u] = 1;
sz[u] ++ ;
sz[v] ++ ;
link( u , v );
link( v , u );
}
int ans = 0;
rep(i,1,N) if(!vis[i]) ans += solve( i );
pf("Case #%d: %d\n", ++ cas , ans );
}
return 0;
}

UVALive 6907 Body Building tarjan的更多相关文章

  1. UVALive 6907 Body Building

    题目链接:https://vjudge.net/problem/UVALive-6907 题意: 给出一张图,判断这张图中有多少个哑铃,哑铃判断的条件是,对于一个连通图:如果找到一条边连接这两个点的个 ...

  2. UVALive 4262——Trip Planning——————【Tarjan 求强连通分量个数】

    Road Networks Time Limit:3000MS     Memory Limit:0KB     64bit IO Format:%lld & %llu Submit Stat ...

  3. Tarjan UVALive 6511 Term Project

    题目传送门 /* 题意:第i个人选择第a[i]个人,问组成强联通分量(自己连自己也算)外还有多少零散的人 有向图强联通分量-Tarjan算法:在模板上加一个num数组,记录每个连通分量的点数,若超过1 ...

  4. UVALive 5135 Mining Your Own Bussiness【tarjan点双】

    LINK1 LINK2 题目大意 给你一个无向连通图,让你给一些点染上黑色,需要满足染色之后,断开任意一个节点,要满足任意一个联通块中剩下的节点中至少有一个黑点 思路 一开始想的是把每一个点双联通分量 ...

  5. UvaLive 5026 Building Roads

    传送门 Time Limit: 3000MS Description There is a magic planet in the space. There is a magical country ...

  6. UVALive - 4108 SKYLINE[线段树]

    UVALive - 4108 SKYLINE Time Limit: 3000MS     64bit IO Format: %lld & %llu Submit Status uDebug ...

  7. tarjan算法求桥双连通分量 POJ 3177 Redundant Paths

    POJ 3177 Redundant Paths Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 12598   Accept ...

  8. HDU 4612 Warm up tarjan缩环+求最长链

    Warm up Problem Description   N planets are connected by M bidirectional channels that allow instant ...

  9. cdoj 92 Journey tarjan/lca 树上点对距离

    Journey Time Limit: 1 Sec Memory Limit: 256 MB 题目连接 http://acm.uestc.edu.cn/#/problem/show/92 Descri ...

随机推荐

  1. 贪心算法:Codevs 1044 拦截导弹

    ---恢复内容开始--- #include <iostream> #include <cstdio> #include <cstdlib> #include < ...

  2. ngx_lua_API 指令详解(五)coroutine.create,coroutine.resume,coroutine.yield 等集合指令介绍

    ngx_lua 模块(原理实现) 1.每个worker(工作进程)创建一个Lua VM,worker内所有协程共享VM: 2.将Nginx I/O原语封装后注入 Lua VM,允许Lua代码直接访问: ...

  3. html5 canvas 垂直渐变描边

    <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/ ...

  4. 被误解的 Node.js

    http://www.ibm.com/developerworks/cn/web/1201_wangqf_nodejs/ 被误解的 Node.js

  5. 基于canvas将图片转化成字符画

    字符画大家一定非常熟悉了,那么如何把一张现有的图片转成字符画呢?HTML5让这个可能变成了现实,通过canvas,可以很轻松实现这个功能.其实原理很简单:扫描图片相应位置的像素点,再计算出其灰度值,根 ...

  6. 使用 jquery-autocomplete插件 完成文本框输入自动填充联想效果 解决兼容IE输入中文问题

    项目中有时会用到ajax自动补全查询,就像Google的搜索框中那样,输入汉字或者字母的首个字母,则包含这个汉字或者字母的相关条目会显示出来供用户选择,该插件就是实现这样的功能的.autocomple ...

  7. 数链剖分(Aragorn's Story )

    题目链接:https://vjudge.net/contest/279350#problem/A 题目大意:n个点,m条边,然后q次询问,因为在树上,两个点能确定一条直线,我们可以对这条直线上的所有值 ...

  8. CSS marging相关

    一.margin可以为负值 在盒模型中,内容区的width/height.padding.border都不能为负值,但是margin例外,它可以为负值. margin负值的本质,在于它改变了元素在普通 ...

  9. Hibernate延迟加载策略

    所谓懒加载(lazy)就是延时加载,就是当在真正需要数据的时候,才真正执行数据加载操作 至于为什么要用懒加载呢,就是当我们要访问的数据量过大时,明显用缓存不太合适,因为内存容量有限 ,为了减少并发量, ...

  10. C# Json To Object 无废话

    json字符串如下: { success : 0, errorMsg : "错误消息", data : { total : "总记录数", rows : [ { ...