EM算法之GMM聚类
以下为GMM聚类程序
import pandas as pd
import matplotlib.pyplot as plt
import numpy as np
data=pd.read_csv('Fremont.csv',index_col='Date',parse_dates=True)
print(data.head()) data.plot()
plt.show()
data.resample('w').sum().plot()#以周为时间统计 data.resample('D').sum().rolling(365).sum().plot()
plt.show() ##按照时间为统计
data.groupby(data.index.time).mean().plot()
plt.xticks(rotation=45)
plt.show() data.columns=['West','East']
data['Total']=data['West']+data['East']
pivoted=data.pivot_table('Total',index=data.index.time,columns=data.index.date)
pivoted.iloc[:5,:5]
print(pivoted.iloc[:5,:5])
pivoted.plot(legend=False,alpha=0.01)
plt.xticks(rotation=45)
plt.show() print(pivoted.shape)
X=pivoted.fillna(0).T.values
print(X.shape) from sklearn.decomposition import PCA
X2 =PCA(2).fit_transform(X)
print(X2.shape)
plt.scatter(X2[:,0],X2[:,1])
plt.show() from sklearn.mixture import GaussianMixture
gmm =GaussianMixture (2)
gmm.fit(X)
# labels= gmm.predict_proba(X)
# print(labels)
labels=gmm.predict(X)
print(labels)
plt.scatter(X2[:,0],X2[:,1],c=labels,cmap='rainbow')
plt.show() from sklearn.datasets.samples_generator import make_blobs
X,y_true =make_blobs(n_samples=800,centers=4,random_state=11)
plt.scatter(X[:,0],X[:,1])
plt.show() from sklearn.cluster import KMeans
KMeans =KMeans(n_clusters=4)
KMeans.fit(X)
y_Kmeans=KMeans.predict(X)
plt.scatter(X[:,0],X[:,1],c=y_Kmeans,s=50,cmap='viridis')
centers=KMeans.cluster_centers_
plt.show() from sklearn.mixture import GaussianMixture
gmm =GaussianMixture(n_components=4).fit(X)
labels=gmm.predict(X)
print(labels)
plt.scatter(X[:,0],X[:,1],c=labels,s=40,cmap='viridis')
plt.show()
运行结果
EM算法之GMM聚类的更多相关文章
- 聚类和EM算法——K均值聚类
python大战机器学习——聚类和EM算法 注:本文中涉及到的公式一律省略(公式不好敲出来),若想了解公式的具体实现,请参考原著. 1.基本概念 (1)聚类的思想: 将数据集划分为若干个不想交的子 ...
- EM 算法(三)-GMM
高斯混合模型 混合模型,顾名思义就是几个概率分布密度混合在一起,而高斯混合模型是最常见的混合模型: GMM,全称 Gaussian Mixture Model,中文名高斯混合模型,也就是由多个高斯分布 ...
- 机器学习——EM算法与GMM算法
目录 最大似然估计 K-means算法 EM算法 GMM算法(实际是高斯混合聚类) 中心思想:①极大似然估计 ②θ=f(θold) 此算法非常老,几乎不会问到,但思想很重要. EM的原理推导还是蛮复杂 ...
- 机器学习(七)EM算法、GMM
一.GMM算法 EM算法实在是难以介绍清楚,因此我们用EM算法的一个特例GMM算法作为引入. 1.GMM算法问题描述 GMM模型称为混合高斯分布,顾名思义,它是由几组分别符合不同参数的高斯分布的数据混 ...
- EM 算法-对鸢尾花数据进行聚类
公号:码农充电站pro 主页:https://codeshellme.github.io 之前介绍过K 均值算法,它是一种聚类算法.今天介绍EM 算法,它也是聚类算法,但比K 均值算法更加灵活强大. ...
- 【机器学习】GMM和EM算法
机器学习算法-GMM和EM算法 目录 机器学习算法-GMM和EM算法 1. GMM模型 2. GMM模型参数求解 2.1 参数的求解 2.2 参数和的求解 3. GMM算法的实现 3.1 gmm类的定 ...
- 6. EM算法-高斯混合模型GMM+Lasso详细代码实现
1. 前言 我们之前有介绍过4. EM算法-高斯混合模型GMM详细代码实现,在那片博文里面把GMM说涉及到的过程,可能会遇到的问题,基本讲了.今天我们升级下,主要一起解析下EM算法中GMM(搞事混合模 ...
- GMM与EM算法
用EM算法估计GMM模型参数 参考 西瓜书 再看下算法流程
- PLSA及EM算法
前言:本文主要介绍PLSA及EM算法,首先给出LSA(隐性语义分析)的早期方法SVD,然后引入基于概率的PLSA模型,其参数学习采用EM算法.接着我们分析如何运用EM算法估计一个简单的mixture ...
随机推荐
- [转] Android中的设计模式-备忘录模式
转自Android中的设计模式-备忘录模式 定义 备忘录设计模式的定义就是把对象的状态记录和管理委托给外界处理,用以维持自己的封闭性. 比较官方的定义 备忘录模式(Memento Pattern)又叫 ...
- Flex学习笔记-Vgropu Hgroup 定义的组 表单程序。
<?xml version="1.0" encoding="utf-8"?> <s:Application xmlns:fx="ht ...
- 如何消除“为帮助保护您的安全,Internet Explorer 已经限制此文件显示可能访问您计算机
如何消除“为帮助保护您的安全,Internet Explorer 已经限制此文件显示可能访问您计算机的活动内容.单击此处查看选项...”每次打开都出现警告音,可以打开浏览器的工具--> Inte ...
- Windows环境安装Django步骤
前提:已经安装Python 1.先从Django官网下载压缩包:https://www.djangoproject.com/download/ 2.解压Django,如我解压到 D:\Python\D ...
- go遍历某个文件夹
//遍历文件夹 dir, err := ioutil.ReadDir("./upload_tmp")for _,file := range dir{ logs.Debug(file ...
- css样式表2
<head> <style type="text/css"> .main { height:42px; width:100%; text-align:cen ...
- sizeof 空类
C++标准规定类的大小不为0,空类的大小为1,当类不包含虚函数和非静态数据成员时,其对象大小也为1. 如果在类中声明了虚函数(不管是1个还是多个),那么在实例化对象时,编译器会自动在对象里安插一个指针 ...
- Indy 10.5.8 for Delphi and Lazarus 修改版(2011)
Indy 10.5.8 for Delphi and Lazarus 修改版(2011) Internet Direct(Indy)是一组开放源代码的Internet组件,涵盖了几乎所有流行的I ...
- 3.SLB 回话保持功能分析
参考文档: 七层会话保持 配置服务器Cookie会话保持常见问题四层监听
- Object-c 调用unity的 UIViewController和UnitySendMessage
.mm文件中实现 #import <UIKit/UIKit.h> extern UIViewController *UnityGetGLViewController(); extern & ...