EM算法之GMM聚类
以下为GMM聚类程序
import pandas as pd
import matplotlib.pyplot as plt
import numpy as np
data=pd.read_csv('Fremont.csv',index_col='Date',parse_dates=True)
print(data.head()) data.plot()
plt.show()
data.resample('w').sum().plot()#以周为时间统计 data.resample('D').sum().rolling(365).sum().plot()
plt.show() ##按照时间为统计
data.groupby(data.index.time).mean().plot()
plt.xticks(rotation=45)
plt.show() data.columns=['West','East']
data['Total']=data['West']+data['East']
pivoted=data.pivot_table('Total',index=data.index.time,columns=data.index.date)
pivoted.iloc[:5,:5]
print(pivoted.iloc[:5,:5])
pivoted.plot(legend=False,alpha=0.01)
plt.xticks(rotation=45)
plt.show() print(pivoted.shape)
X=pivoted.fillna(0).T.values
print(X.shape) from sklearn.decomposition import PCA
X2 =PCA(2).fit_transform(X)
print(X2.shape)
plt.scatter(X2[:,0],X2[:,1])
plt.show() from sklearn.mixture import GaussianMixture
gmm =GaussianMixture (2)
gmm.fit(X)
# labels= gmm.predict_proba(X)
# print(labels)
labels=gmm.predict(X)
print(labels)
plt.scatter(X2[:,0],X2[:,1],c=labels,cmap='rainbow')
plt.show() from sklearn.datasets.samples_generator import make_blobs
X,y_true =make_blobs(n_samples=800,centers=4,random_state=11)
plt.scatter(X[:,0],X[:,1])
plt.show() from sklearn.cluster import KMeans
KMeans =KMeans(n_clusters=4)
KMeans.fit(X)
y_Kmeans=KMeans.predict(X)
plt.scatter(X[:,0],X[:,1],c=y_Kmeans,s=50,cmap='viridis')
centers=KMeans.cluster_centers_
plt.show() from sklearn.mixture import GaussianMixture
gmm =GaussianMixture(n_components=4).fit(X)
labels=gmm.predict(X)
print(labels)
plt.scatter(X[:,0],X[:,1],c=labels,s=40,cmap='viridis')
plt.show()
运行结果
EM算法之GMM聚类的更多相关文章
- 聚类和EM算法——K均值聚类
python大战机器学习——聚类和EM算法 注:本文中涉及到的公式一律省略(公式不好敲出来),若想了解公式的具体实现,请参考原著. 1.基本概念 (1)聚类的思想: 将数据集划分为若干个不想交的子 ...
- EM 算法(三)-GMM
高斯混合模型 混合模型,顾名思义就是几个概率分布密度混合在一起,而高斯混合模型是最常见的混合模型: GMM,全称 Gaussian Mixture Model,中文名高斯混合模型,也就是由多个高斯分布 ...
- 机器学习——EM算法与GMM算法
目录 最大似然估计 K-means算法 EM算法 GMM算法(实际是高斯混合聚类) 中心思想:①极大似然估计 ②θ=f(θold) 此算法非常老,几乎不会问到,但思想很重要. EM的原理推导还是蛮复杂 ...
- 机器学习(七)EM算法、GMM
一.GMM算法 EM算法实在是难以介绍清楚,因此我们用EM算法的一个特例GMM算法作为引入. 1.GMM算法问题描述 GMM模型称为混合高斯分布,顾名思义,它是由几组分别符合不同参数的高斯分布的数据混 ...
- EM 算法-对鸢尾花数据进行聚类
公号:码农充电站pro 主页:https://codeshellme.github.io 之前介绍过K 均值算法,它是一种聚类算法.今天介绍EM 算法,它也是聚类算法,但比K 均值算法更加灵活强大. ...
- 【机器学习】GMM和EM算法
机器学习算法-GMM和EM算法 目录 机器学习算法-GMM和EM算法 1. GMM模型 2. GMM模型参数求解 2.1 参数的求解 2.2 参数和的求解 3. GMM算法的实现 3.1 gmm类的定 ...
- 6. EM算法-高斯混合模型GMM+Lasso详细代码实现
1. 前言 我们之前有介绍过4. EM算法-高斯混合模型GMM详细代码实现,在那片博文里面把GMM说涉及到的过程,可能会遇到的问题,基本讲了.今天我们升级下,主要一起解析下EM算法中GMM(搞事混合模 ...
- GMM与EM算法
用EM算法估计GMM模型参数 参考 西瓜书 再看下算法流程
- PLSA及EM算法
前言:本文主要介绍PLSA及EM算法,首先给出LSA(隐性语义分析)的早期方法SVD,然后引入基于概率的PLSA模型,其参数学习采用EM算法.接着我们分析如何运用EM算法估计一个简单的mixture ...
随机推荐
- python网络图片爬取存储全代码
#图片爬取全代码import requestsimport osurl = "https://timgsa.baidu.com/timg?image&quality=80&s ...
- Mapperreduce的wordCount原理
wordcount原理: 1.mapper(Object key,Object value ,Context contex)阶段 2.从数据源读取一行数据传递给mapper函数的value 3.处理数 ...
- delphi ios info.plist
delphi ios info.plist delphi修改info.plist.TemplateiOS.xml文件,然后自动生成project1.info.plist http://docwiki. ...
- sql server 查看所有表记录数
SELECT object_name (i.id) TableName, rows as rows FROM sysindexes i INNER JOIN sysObjects o ON (o.id ...
- day25-面向对象结构与成员
1.面向对象结构分析 如下面的图所示:面向对象整体大致分两块区域: 每个大区域又可以分为多个小部分: class A: name = 'Tom' # 静态变量(静态字段) __iphone = '13 ...
- ABAP-异常捕获
异常处理 基于类的异常exception classes 捕获 使用老式方式捕获catchable runtime errors 向上抛出异常 手动触发异常(类异常) 6.1版本以后,TRY…ENDT ...
- echarts图表--统计图表
echarts官网图表API:http://echarts.baidu.com/index.html
- vue .map 文件
参数: productionSourceMap:false 这个改为false.去掉打包产生的map文件 map文件的作用:定位线上错误代码位置;
- Linux:条件变量
条件变量: 条件变量本身不是锁!但它也可以造成线程阻塞.通常与互斥锁配合使用.给多线程提供一个会合的场所. 主要应用函数: pthread_cond_init函数 pthrea ...
- 关于GC.Collect在不同机器上表现不一致问题
2019.1.17,昨天项目更新后策划反应: 游戏卡,表现为:每走几步就卡一下.前天还没有. 但在我本机测试中,却没有任何卡顿感. QC同学的机器也卡.我去看了下,打开Profiler,没开deep, ...