(北大自招)已知$-6\le x_i\le 10 (i=1,2,\cdots,10),\sum\limits_{i=1}^{10}x_i=50,$当$\sum\limits_{i=1}^{10}x^2_i$取到最大值时,在$x_1,\cdots ,x_{10}$这十个数中等于$-6$的数共有______

提示:注意到:$a\le b\le c\le d$且$a+d=b+c$时,$a^2+d^2-(b^2+c^2)=(d-c)(d+c-a-b)\ge0$故$x_i$中最多一个属于$(-6,10)$,不妨该数记为a,设有$k$的-6,则$-6k+(9-k)10+a=50,$易得$k=3$

或者用反证法说明:

假设当$\sum\limits_{i = 1}^{10} {{x_i}^2} $取得最大值时,在$x_i$中存在两个数$x_i,x_j\in(-6,10),x_i\leqslant x_j$,则令$x=\min\{10-x_j,x_i+6\}$,则$x>0$,且$x_i-x\geqslant -6,x_j+x\leqslant 10$,且有$$(x_i-x)^2+(x_j+x)^2=x_i^2+x_j^2+2x^2+2x(x_j-x_i)>x_i^2+x_j^2,$$矛盾,所以$x_i,i=1,2,\cdots,10$中至多只有一个数不等于$-6$或$10$.
假设其中有$k$个$-6$,则有$9-k$个$10$,剩下的一个数为$$50-(-6)k-10(9-k)=16k-40\in(-6,10),$$解得$k=3$

注:这里其实有一个重要定理 

MT【203】连续型的最值的更多相关文章

  1. 连续型变量的推断性分析——t检验

    连续型变量的推断性分析方法主要有t检验和方差分析两种,这两种方法可以解决一些实际的分析问题,下面我们分别来介绍一下这两种方法 一.t检验(Student's t test) t检验也称student ...

  2. 【概率论与数理统计】小结4 - 一维连续型随机变量及其Python实现

    注:上一小节总结了离散型随机变量,这个小节总结连续型随机变量.离散型随机变量的可能取值只有有限多个或是无限可数的(可以与自然数一一对应),连续型随机变量的可能取值则是一段连续的区域或是整个实数轴,是不 ...

  3. 常用连续型分布介绍及R语言实现

    常用连续型分布介绍及R语言实现 R的极客理想系列文章,涵盖了R的思想,使用,工具,创新等的一系列要点,以我个人的学习和体验去诠释R的强大. R语言作为统计学一门语言,一直在小众领域闪耀着光芒.直到大数 ...

  4. 处理离散型特征和连续型特征共存的情况 归一化 论述了对离散特征进行one-hot编码的意义

    转发:https://blog.csdn.net/lujiandong1/article/details/49448051 处理离散型特征和连续型特征并存的情况,如何做归一化.参考博客进行了总结:ht ...

  5. 2×c列联表|多组比例简式|卡方检验|χ2检验与连续型资料假设检验

    第四章 χ2检验 χ2检验与连续型资料假设检验的区别? 卡方检验的假设检验是什么? 理论值等于实际值 何条件下卡方检验的需要矫正?如何矫正? 卡方检验的自由度如何计算? Df=k-1而不是n-1 卡方 ...

  6. 为什么阿里巴巴Java开发手册中强制要求整型包装类对象值用 equals 方法比较?

    在阅读<阿里巴巴Java开发手册>时,发现有一条关于整型包装类对象之间值比较的规约,具体内容如下: 这条建议非常值得大家关注, 而且该问题在 Java 面试中十分常见. 还需要思考以下几个 ...

  7. seaborn 数据可视化(一)连续型变量可视化

    一.综述 Seaborn其实是在matplotlib的基础上进行了更高级的API封装,从而使得作图更加容易,图像也更加美观,本文基于seaborn官方API还有自己的一些理解.   1.1.样式控制: ...

  8. 【书签】连续型特征的归一化和离散特征的one-hot编码

    1. 连续型特征的常用的归一化方法.离散型特征one-hot编码的意义 2. 度量特征之间的相关性:余弦相似度和皮尔逊相关系数

  9. 第一节 Python基础之数据类型(整型,布尔值,字符串)

    数据类型是每一种语言的基础,就比如说一支笔,它的墨有可能是红色,有可能是黑色,也有可能是黄色等等,这不同的颜色就会被人用在不同的场景.Python中的数据类型也是一样,比如说我们要描述一个人的年龄:小 ...

随机推荐

  1. Android Studio常用快捷键 - 转

    Android Studio常用快捷键 1. Ctrl+D: 集合了复制和粘贴两个操作,如果有选中的部分就复制选中的部分,并在选中部分的后面粘贴出来,如果没有选中的部分,就复制光标所在的行,并在此行的 ...

  2. .NET Core installation for Docker

  3. UWP ListView 绑定 单击 选中项 颜色

    refer: https://www.cnblogs.com/lonelyxmas/p/7650259.html using System; using System.Collections.Gene ...

  4. 2017-2018-2 20155203《网络对抗技术》 Exp8:Web基础

    基础问题回答 (1)什么是表单 我认为,form概念主要区分于table,table是用网页布局设计,是静态的,form是用于显示和收集信息传递到服务器和后台数据库中,是动态的: 以下是表单的百度百科 ...

  5. 2017-2018 Exp8 Web基础 20155214

    目录 Exp8 Web基础 实验内容 建站过程 SQL注入 知识点 Exp8 Web基础 实验内容 实验环境 主机 Kali 靶机 Kali 实验工具 后台语言 'PHP' 服务器 'Apache' ...

  6. [APIO2013]机器人[搜索、斯坦纳树]

    题意 题目链接 分析 记 g(d,x,y) 表示从 (x,y) 出发,方向为 d 到达的点,这个可以通过记忆化搜索求出,注意如果转移成环(此时向这个方向走没有意义)要特判. 记 f(l,r,x,y) ...

  7. [CF587F]Duff is Mad[AC自动机+根号分治+分块]

    题意 给你 \(n\) 个串 \(s_{1\cdots n}\) ,每次询问给出 \(l,r,k\) ,问在 \(s_{l\cdots r}\) 中出现了多少次 \(s_k\) . \(n,q,\su ...

  8. 使用Windows Server 2003搭建一个asp+access网站

    鼠标右键->新建->网站->下一步->描述(随便给一个,这里我以test为例) ->下一步->下一步->输入主目录的路径,默认路径下是C:\Inetpub\w ...

  9. 用Beyond Compare比较文本时,忽略不重要文本的方法

    Beyond Compare是一款好用的文本比较工具,可以比较纯文本文件.源代码和HTML,Word文档.Adobe和pdf文件.在使用Beyond Compare比较文本文件时,有些不重要的文本差异 ...

  10. 金蝶盘点机PDA仓库条码管理:仓库如何盘点

    1.1. 仓库盘点 传统的仓库盘点,需要人工手工抄写盘点单,时候再去电脑上一行行的录入盘点单,操作非常耗时费力,往往需要盘点好几天,最终盘点效果还不好,在抄写过程中容易出现错误,从而造成盘点结果不准确 ...