(北大自招)已知$-6\le x_i\le 10 (i=1,2,\cdots,10),\sum\limits_{i=1}^{10}x_i=50,$当$\sum\limits_{i=1}^{10}x^2_i$取到最大值时,在$x_1,\cdots ,x_{10}$这十个数中等于$-6$的数共有______

提示:注意到:$a\le b\le c\le d$且$a+d=b+c$时,$a^2+d^2-(b^2+c^2)=(d-c)(d+c-a-b)\ge0$故$x_i$中最多一个属于$(-6,10)$,不妨该数记为a,设有$k$的-6,则$-6k+(9-k)10+a=50,$易得$k=3$

或者用反证法说明:

假设当$\sum\limits_{i = 1}^{10} {{x_i}^2} $取得最大值时,在$x_i$中存在两个数$x_i,x_j\in(-6,10),x_i\leqslant x_j$,则令$x=\min\{10-x_j,x_i+6\}$,则$x>0$,且$x_i-x\geqslant -6,x_j+x\leqslant 10$,且有$$(x_i-x)^2+(x_j+x)^2=x_i^2+x_j^2+2x^2+2x(x_j-x_i)>x_i^2+x_j^2,$$矛盾,所以$x_i,i=1,2,\cdots,10$中至多只有一个数不等于$-6$或$10$.
假设其中有$k$个$-6$,则有$9-k$个$10$,剩下的一个数为$$50-(-6)k-10(9-k)=16k-40\in(-6,10),$$解得$k=3$

注:这里其实有一个重要定理 

MT【203】连续型的最值的更多相关文章

  1. 连续型变量的推断性分析——t检验

    连续型变量的推断性分析方法主要有t检验和方差分析两种,这两种方法可以解决一些实际的分析问题,下面我们分别来介绍一下这两种方法 一.t检验(Student's t test) t检验也称student ...

  2. 【概率论与数理统计】小结4 - 一维连续型随机变量及其Python实现

    注:上一小节总结了离散型随机变量,这个小节总结连续型随机变量.离散型随机变量的可能取值只有有限多个或是无限可数的(可以与自然数一一对应),连续型随机变量的可能取值则是一段连续的区域或是整个实数轴,是不 ...

  3. 常用连续型分布介绍及R语言实现

    常用连续型分布介绍及R语言实现 R的极客理想系列文章,涵盖了R的思想,使用,工具,创新等的一系列要点,以我个人的学习和体验去诠释R的强大. R语言作为统计学一门语言,一直在小众领域闪耀着光芒.直到大数 ...

  4. 处理离散型特征和连续型特征共存的情况 归一化 论述了对离散特征进行one-hot编码的意义

    转发:https://blog.csdn.net/lujiandong1/article/details/49448051 处理离散型特征和连续型特征并存的情况,如何做归一化.参考博客进行了总结:ht ...

  5. 2×c列联表|多组比例简式|卡方检验|χ2检验与连续型资料假设检验

    第四章 χ2检验 χ2检验与连续型资料假设检验的区别? 卡方检验的假设检验是什么? 理论值等于实际值 何条件下卡方检验的需要矫正?如何矫正? 卡方检验的自由度如何计算? Df=k-1而不是n-1 卡方 ...

  6. 为什么阿里巴巴Java开发手册中强制要求整型包装类对象值用 equals 方法比较?

    在阅读<阿里巴巴Java开发手册>时,发现有一条关于整型包装类对象之间值比较的规约,具体内容如下: 这条建议非常值得大家关注, 而且该问题在 Java 面试中十分常见. 还需要思考以下几个 ...

  7. seaborn 数据可视化(一)连续型变量可视化

    一.综述 Seaborn其实是在matplotlib的基础上进行了更高级的API封装,从而使得作图更加容易,图像也更加美观,本文基于seaborn官方API还有自己的一些理解.   1.1.样式控制: ...

  8. 【书签】连续型特征的归一化和离散特征的one-hot编码

    1. 连续型特征的常用的归一化方法.离散型特征one-hot编码的意义 2. 度量特征之间的相关性:余弦相似度和皮尔逊相关系数

  9. 第一节 Python基础之数据类型(整型,布尔值,字符串)

    数据类型是每一种语言的基础,就比如说一支笔,它的墨有可能是红色,有可能是黑色,也有可能是黄色等等,这不同的颜色就会被人用在不同的场景.Python中的数据类型也是一样,比如说我们要描述一个人的年龄:小 ...

随机推荐

  1. day32

    今日内容 1.基于TCP协议(通信循环) 2.基于TCP协议(连接循环) 3.粘包问题 4.模拟SSH实现远程执行命令 服务器端 ################################### ...

  2. lucas定理的证明

    http://baike.baidu.com/link?url=jJgkOWPSRMobN7Zk4kIrQAri8m0APxcxP9d-C6qSkIuembQekeRwUoEoBd6bwdidmoCR ...

  3. 【js】AddFavorite/SetHome提醒用户自行操作加入收藏/设置主页

    除了老版本的ie, 就已经没有浏览器能支持js添加收藏夹和设置首页, 浏览器没有开放这个权限了,external.addFavorite这个给禁了. 不过AddFavorite可以起到提醒用户自行操作 ...

  4. golang channel 源码剖析

    channel 在 golang 中是一个非常重要的特性,它为我们提供了一个并发模型.对比锁,通过 chan 在多个 goroutine 之间完成数据交互,可以让代码更简洁.更容易实现.更不容易出错. ...

  5. 微服务 Rpc和Rest协议

    原文:https://blog.csdn.net/king866/article/details/54174665 接口调用通常包含两个部分,序列化和通信协议.常见的序列化协议包括json.xml.h ...

  6. STM32一键下载电路设计原理

    先放原理图(补充:图中的BOOT0通过10K的电阻接到地),再解释为什么这么设计: STM32启动方式:BOOT0和 BOOT1用于设置 STM32的启动方式 ,见下表: BOOT0=1,BOOT1= ...

  7. 移动端页面滑动时候警告:Unable to preventDefault inside passive event listener due to target being treated as passive.

    移动端项目中,在滚动的时候,会报出以下提示: [Intervention] Unable to preventDefault inside passive event listener due to ...

  8. Solr 后台查询实例 (工作备查)

    有时间再进行整理package xxx.service.impl; import java.util.HashMap; import java.util.Map; import java.util.M ...

  9. stl源码剖析 详细学习笔记 算法(3)

    //---------------------------15/03/30---------------------------- //min_element template<class Fo ...

  10. 微软职位内部推荐-Senior PM

    微软近期Open的职位: Senior Product Manager My Life & Work Beijing China Our passion is to enable people ...