洛谷 P2224 [HNOI2001]产品加工 解题报告
P2224 [HNOI2001]产品加工
题目描述
某加工厂有A、B两台机器,来加工的产品可以由其中任何一台机器完成,或者两台机器共同完成。由于受到机器性能和产品特性的限制,不同的机器加工同一产品所需的时间会不同,若同时由两台机器共同进行加工,所完成任务又会不同。某一天,加工厂接到n个产品加工的任务,每个任务的工作量不尽一样。
你的任务就是:已知每个任务在A机器上加工所需的时间t1, B机器上加工所需的时间t2及由两台机器共同加工所需的时间t3,请你合理安排任务的调度顺序,使完成所有n个任务的总时间最少。
输入输出格式
输入格式:
(输入文件共n+1行)
第1行为 n。 n是任务总数(1≤n≤6000)
第i+1行为3个[0,5]之间的非负整数t1,t2,t3,分别表示第i个任务在A机器上加工、B机器上加工、两台机器共同加工所需要的时间。如果所给的时间t1或t2为0表示任务不能在该台机器上加工,如果t3为0表示任务不能同时由两台机器加工。
输出格式:
最少完成时间
这个DP没见过的话估计很难想出来。
时间肯定要压进去一维,但这两个机器是并行的,看起来非常难存储与转移状态。
思考方向我没什么想法,只好直接介绍方法了。
令\(dp[i][j]\)代表前\(i\)件物品全部处理时\(A\)机器用时\(j\)时\(B\)机器的最小用时。
注意两台机器的状态被拆成了里面和外面。
转移
\(dp[i][j]=min(dp[i-1][j]-c_{iA},dp[i-1][j]+c_{iB},dp[i-1][j-c_{iC}]+c_{iC})\)
空间会爆,所以采用滚动数组优化。
这题还卡常,所以如果特判不存在或者每次清0滚动数组会T,解决方法是读入是直接把0赋值成inf,注意inf不要太大,否则可能会爆int
但还是会T,我们加上时间的上界优化
2018.6.28 晚 21.50更新
同机房的神犇发现了一个问题,在这里提一下。
在转移同时操作(操作3)时为什么这样是合法的
确实,看起来并不是并行的。
这么理解,我们其实并不关心这个方案是怎么放的。
所以我们把所有的并行操作放在一起最前面就行啦
把\(dp[i][j]\)数组的意义改一下。
\(dp[i][j]\)表示在\(j\)时刻一共运行了\(max(j,dp[i][j])\)时间时处理完所有物品的最小值
他的解释方法产品加工
Code:
#include <cstdio>
#include <cstring>
int max(int x,int y){return x>y?x:y;}
int min(int x,int y){return x<y?x:y;}
const int inf=30010;
int n,c[3],dp[inf],ans=inf,r;
int main()
{
scanf("%d",&n);
for(int i=1;i<=n*5;i++)
dp[i]=inf;
dp[0]=0;
for(int i=1;i<=n;i++)
{
scanf("%d%d%d",c,c+1,c+2);
r+=max(c[0],max(c[1],c[2]));
if(!c[0]) c[0]=inf;
if(!c[1]) c[1]=inf;
if(!c[2]) c[2]=inf;
for(int j=r;j>=0;j--)
{
dp[j]+=c[1];
if(j>=c[0])
dp[j]=min(dp[j],dp[j-c[0]]);
if(j>=c[2])
dp[j]=min(dp[j],dp[j-c[2]]+c[2]);
}
}
for(int i=0;i<=r;i++)
ans=min(ans,max(dp[i],i));
printf("%d\n",ans);
return 0;
}
2018.6.28
洛谷 P2224 [HNOI2001]产品加工 解题报告的更多相关文章
- 洛谷P2224 [HNOI2001] 产品加工 [DP补完计划,背包]
题目传送门 产品加工 题目描述 某加工厂有A.B两台机器,来加工的产品可以由其中任何一台机器完成,或者两台机器共同完成.由于受到机器性能和产品特性的限制,不同的机器加工同一产品所需的时间会不同,若同时 ...
- 洛谷 P1783 海滩防御 解题报告
P1783 海滩防御 题目描述 WLP同学最近迷上了一款网络联机对战游戏(终于知道为毛JOHNKRAM每天刷洛谷效率那么低了),但是他却为了这个游戏很苦恼,因为他在海边的造船厂和仓库总是被敌方派人偷袭 ...
- 洛谷 P4597 序列sequence 解题报告
P4597 序列sequence 题目背景 原题\(\tt{cf13c}\)数据加强版 题目描述 给定一个序列,每次操作可以把某个数\(+1\)或\(-1\).要求把序列变成非降数列.而且要求修改后的 ...
- 洛谷1087 FBI树 解题报告
洛谷1087 FBI树 本题地址:http://www.luogu.org/problem/show?pid=1087 题目描述 我们可以把由“0”和“1”组成的字符串分为三类:全“0”串称为B串,全 ...
- 洛谷 P3349 [ZJOI2016]小星星 解题报告
P3349 [ZJOI2016]小星星 题目描述 小\(Y\)是一个心灵手巧的女孩子,她喜欢手工制作一些小饰品.她有\(n\)颗小星星,用\(m\)条彩色的细线串了起来,每条细线连着两颗小星星. 有一 ...
- 洛谷 P3177 树上染色 解题报告
P3177 [HAOI2015]树上染色 题目描述 有一棵点数为\(N\)的树,树边有边权.给你一个在\(0\) ~ \(N\)之内的正整数\(K\),你要在这棵树中选择\(K\)个点,将其染成黑色, ...
- 洛谷 P4705 玩游戏 解题报告
P4705 玩游戏 题意:给长为\(n\)的\(\{a_i\}\)和长为\(m\)的\(\{b_i\}\),设 \[ f(x)=\sum_{k\ge 0}\sum_{i=1}^n\sum_{j=1}^ ...
- 洛谷 P1272 重建道路 解题报告
P1272 重建道路 题目描述 一场可怕的地震后,人们用\(N\)个牲口棚\((1≤N≤150\),编号\(1..N\))重建了农夫\(John\)的牧场.由于人们没有时间建设多余的道路,所以现在从一 ...
- 洛谷 [HNOI2014]道路堵塞 解题报告
[HNOI2014]道路堵塞 题意 给一个有向图并给出一个这个图的一个\(1\sim n\)最短路,求删去这条最短路上任何一条边后的最短路. 又事SPFA玄学... 有个结论,新的最短路一定是\(1\ ...
随机推荐
- 1.6《想成为黑客,不知道这些命令行可不行》(Learn Enough Command Line to Be Dangerous)——小结
本章节学过的重要命令整理,见下表Table 2. 命令 描述 例子 echo <string> 向屏幕输出字符串 $ echo hello man <command> 显示命令 ...
- 20155206赵飞 基于《Arm试验箱的国密算法应用》课程设计个人报告
20155206赵飞 基于<Arm试验箱的国密算法应用>课程设计个人报告 课程设计中承担的任务 完成试验箱测试功能1,2,3 . 1:LED闪烁实验 一.实验目的 学习GPIO原理 ...
- 从零开始学cookie(个人笔记)——一
未完待续 参考链接 : cookie (储存在用户本地终端上的数据) 关键词: cookie session HTTP 小文本文件 解释 Cookie 是由 Web 服务器保存在用户浏览器上的小文本文 ...
- 分类-MNIST(手写数字识别)
这是学习<Hands-On Machine Learning with Scikit-Learn and TensorFlow>的笔记,如果此笔记对该书有侵权内容,请联系我,将其删除. 这 ...
- 一波三折Miz702终于能显示桌面上网啦
先上两张图,总结之后再说啦---
- OpenCV学习C++接口 Mat像素遍历详解
OpenCV学习C++接口 Mat像素遍历详解
- [C#源代码]使用SCPI指令对通信端口(RS232/USB/GPIB/LAN)进行仪器编程
本文为原创文章.源代码为原创代码,如转载/复制,请在网页/代码处明显位置标明原文名称.作者及网址,谢谢! 本软件是基于NI-VISA/VISA32(Virtual Instrument Softwar ...
- 11、Dockerfile实战-Tomcat
一.编写Dockerfile 具体步骤这里不再细说,直接看Dockerfile文件: FROM centos:7 MAINTAINER QUNXUE ENV VERSION=8.0.46 RUN yu ...
- C#_父窗体跟子窗体的控件操作
很多人都苦恼于如何在子窗体中操作主窗体上的控件,或者在主窗体中操作子窗体上的控件.相比较而言,后面稍微简单一些,只要在主窗体中创建子窗体的时候,保留所创建子窗体对象即可. 下面重点介绍前一种,目前常见 ...
- mac10.12.6系统使用cmake安装opencv3.3.0+opencv_contrib-3.3.0
brew与cmake brew安装 /usr/bin/ruby -e "$(curl -fsSL https://raw.githubusercontent.com/Homebrew/ins ...