【转】Caffe初试(五)视觉层及参数
本文只讲解视觉层(Vision Layers)的参数,视觉层包括Convolution, Pooling, Local Response Normalization (LRN), im2col等层。
1、Convolution层:
就是卷积层,是卷积神经网络(CNN)的核心层。
层类型:Convolution
lr_mult: 学习率的系数,最终的学习率是这个数乘以solver.prototxt配置文件中的base_lr。如果有两个lr_mult, 则第一个表示权值的学习率,第二个表示偏置项的学习率。一般偏置项的学习率是权值学习率的两倍。在后面的convolution_param中,我们可以设定卷积层的特有参数。
必须设置的参数:
num_output: 卷积核(filter)的个数
kernel_size: 卷积核的大小。如果卷积核的长和宽不等,需要用kernel_h和kernel_w分别设定
其它参数:
stride: 卷积核的步长,默认为1。也可以用stride_h和stride_w来设置。
pad: 扩充边缘,默认为0,不扩充。 扩充的时候是左右、上下对称的,比如卷积核的大小为5*5,那么pad设置为2,则四个边缘都扩充2个像素,即宽度和高度都扩充了4个像素,这样卷积运算之后的特征图就不会变小。也可以通过pad_h和pad_w来分别设定。
layer {
name: "conv1"
type: "Convolution"
bottom: "data"
top: "conv1"
param {
lr_mult: 1
}
param {
lr_mult: 2
}
convolution_param {
num_output: 20
kernel_size: 5
stride: 1
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
}
}
}
2、Pooling层
layer {
name: "pool1"
type: "Pooling"
bottom: "conv1"
top: "pool1"
pooling_param {
pool: MAX
kernel_size: 3
stride: 2
}
}
pooling层的运算方法基本是和卷积层是一样的。
layers {
name: "norm1"
type: LRN
bottom: "pool1"
top: "norm1"
lrn_param {
local_size: 5
alpha: 0.0001
beta: 0.75
}
}
4、im2col层
如果对matlab比较熟悉的话,就应该知道im2col是什么意思,它先将一个大矩阵,重叠划分为多个子矩阵,对每个子矩阵序列化成向量,最后得到另外一个矩阵。
看一看图就知道了:
在caffe中,卷积运算就是先对数据进行im2col操作,再进行内积运算(inner product)。这样做,比原始的卷积操作速度更快。
看看两种卷积操作的异同:
以上。
【转】Caffe初试(五)视觉层及参数的更多相关文章
- caffe(3) 视觉层及参数
本文只讲解视觉层(Vision Layers)的参数,视觉层包括Convolution, Pooling, Local Response Normalization (LRN)局部相应归一化, im2 ...
- caffe(5) 其他常用层及参数
本文讲解一些其它的常用层,包括:softmax_loss层,Inner Product层,accuracy层,reshape层和dropout层及其它们的参数配置. 1.softmax-loss so ...
- caffe之(五)loss层
在caffe中,网络的结构由prototxt文件中给出,由一些列的Layer(层)组成,常用的层如:数据加载层.卷积操作层.pooling层.非线性变换层.内积运算层.归一化层.损失计算层等:本篇主要 ...
- Caffe学习系列(3):视觉层(Vision Layers)及参数
所有的层都具有的参数,如name, type, bottom, top和transform_param请参看我的前一篇文章:Caffe学习系列(2):数据层及参数 本文只讲解视觉层(Vision La ...
- 转 Caffe学习系列(3):视觉层(Vision Layers)及参数
所有的层都具有的参数,如name, type, bottom, top和transform_param请参看我的前一篇文章:Caffe学习系列(2):数据层及参数 本文只讲解视觉层(Vision La ...
- [转] caffe视觉层Vision Layers 及参数
视觉层包括Convolution, Pooling, Local Response Normalization (LRN), im2col等层. 1.Convolution层: 就是卷积层,是卷积神经 ...
- 【转】Caffe初试(七)其它常用层及参数
本文讲解一些其它的常用层,包括:softmax-loss层,Inner Product层,accuracy层,reshape层和dropout层及它们的参数配置. 1.softmax-loss sof ...
- caffe学习系列(4):视觉层介绍
视觉层包括Convolution, Pooling, Local Response Normalization (LRN), im2col等层. 这里介绍下conv层. layer { name: & ...
- Caffe学习系列(5):其它常用层及参数
本文讲解一些其它的常用层,包括:softmax_loss层,Inner Product层,accuracy层,reshape层和dropout层及其它们的参数配置. 1.softmax-loss so ...
随机推荐
- SQLite剖析之编程接口详解
前言 使用过程根据函数大致分为如下几个过程: sqlite3_open() sqlite3_prepare() sqlite3_step() sqlite3_column() sqlite3_fina ...
- kuangbin专题总结一 简单搜索
A - 棋盘问题:在一个给定形状的棋盘(形状可能是不规则的)上面摆放棋子,棋子没有区别.要求摆放时任意的两个棋子不能放在棋盘中的同一行或者同一列,请编程求解对于给定形状和大小的棋盘,摆放k个棋子的所有 ...
- HTML5 屏蔽触屏滚动
开发移动的html应用时常常需要将网页触控事件屏蔽掉.代码如下: //屏蔽全局触控事件 document.ontouchmove = function(e){ e.preventDefault();} ...
- jquery版楼层滚动特效
<!DOCTYPE html><html> <head> <meta charset="UTF-8"> <title>楼 ...
- 在servlet中用spring @Autowire注入
今天在改版以前应用程序的时候,发现很多系统是直接用servlet做的.当初也用到了spring,所以自然想到也用spring的@autowire注入来引入service层.但发现如果直接用,有时候成功 ...
- deepin 15.3添加PPA源 安装php5.6
想要在deepin 15.3上安装PHP5.6,我们需要手动添加源. 在https://launchpad.net/+search?field.text=php上可以通过搜索找到你想要的软件源, PP ...
- 【poj3875】 Lights
http://poj.org/problem?id=3875 (题目链接) 题意 有M个N位的不同的二进制数,他们异或起来前v位等于1,求这m个数的不同组合方式(同一组数不同顺序不算). Soluti ...
- gif工具 - ScreenToGif
之前我介绍过LiceCap这款制作gif的软件,但是那个软件的获取方式较为麻烦,并且有时候可能在不同的设备上会表现效果有所不同,这里将要介绍的软件我认为还是非常不错的,我们可以在ScreenToGif ...
- A=AUB
#include<stdio.h>#include<stdlib.h> #define LIST_MAX 10#define LIST_ADD 2 typedef struct ...
- 构建兼容浏览器的Angularjs web应用
背景 随着mvvm逐渐成熟,现在使用jQuery构建web应用已经显得过时了,而且使用jQuery需要编写更多的代码去控制dom的取值.赋值.绑定事件等,而mvv从底层实现了对以上操作的支持,让程序员 ...