hdu4746莫比乌斯反演进阶题
Mophues
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 327670/327670 K (Java/Others)
Total Submission(s): 1922 Accepted Submission(s): 791
C = p1×p2× p3× ... × pk
which p1, p2 ... pk are all prime numbers.For example, if C = 24, then:
24 = 2 × 2 × 2 × 3
here, p1 = p2 = p3 = 2, p4 = 3, k = 4
Given two integers P and C. if k<=P( k is the number of C's prime factors), we call C a lucky number of P.
Now, XXX needs to count the number of pairs (a, b), which 1<=a<=n , 1<=b<=m, and gcd(a,b) is a lucky number of a given P ( "gcd" means "greatest common divisor").
Please note that we define 1 as lucky number of any non-negative integers because 1 has no prime factor.
Then Q lines follow, each line is a test case and each test case contains three non-negative numbers: n, m and P (n, m, P <= 5×105. Q <=5000).
for(int i=;i<=n;++i)//枚举每个因子
if(d[i]<=k)//如果因子的素数质因子小于等于k
for(int j=i;j<=n;j+=i) ans+=u(j/i)*(n/i)*(m/i)//枚举F(i);
利用的是第二个,然后可以发现,对于每个数字i,他的倍数j的系数都要加上u[j/i],可以与处理出来U(N),其中U(i)就是u[i/第一个因子]+u[i/第二个因子]+....(这里的U先不考虑素因子个数限制)
那么上述式子就可以化简成为
for(int i=;i<=n;++i) ans+=U(i)*(n/i)*(m/i);//直接枚举
然后U(i)考虑素因子个数限制的话,那么显然预处理也是可以搞出来的,详细见代码,代码里的cnt[N][19]就是U考虑限制的。
然后就是普通的分块操作,为了简化时间,因为W=(n/i)*(m/i),i倘若在一定范围内,这个W是不变的,所以可以加速。
所以最后就是这样了
for(int i=,last=i;i<=n;i=last+){
last=min(n/(n/i),m/(m/i));
ans+=(ll)(cnt[last][k]-cnt[i-][k])*(n/i)*(m/i);
}
#include<cstdio>
#include<cstring>
#include<iostream>
#include<vector>
using namespace std;
const int maxn = ;
typedef long long ll;
int mu[maxn],sum[maxn],num[maxn];
ll cnt[maxn][];
bool flag[maxn];
vector<int>prime;
void init(){
mu[]=;
for(int i=;i<maxn;i++){
if(!flag[i]){
prime.push_back(i);
mu[i]=-;
num[i]=;
}
for(int j=;j<prime.size()&&i*prime[j]<maxn;j++){
flag[i*prime[j]]=true;
num[i*prime[j]]=num[i]+;
if(i%prime[j])mu[i*prime[j]]=-mu[i];
else {mu[i*prime[j]]=;break;}
}
}
for(int i=;i<maxn;i++){
for(int j=i;j<maxn;j+=i){
cnt[j][num[i]]+=mu[j/i];
}
}
for(int i=;i<maxn;i++){
for(int j=;j<;j++){
cnt[i][j]+=cnt[i][j-];
}
}
for(int i=;i<maxn;i++){
for(int j=;j<;j++){
cnt[i][j]+=cnt[i-][j];
}
}
}
int main(){
init();
int q;
scanf("%d",&q);
while(q--){
int n,m,k;
scanf("%d%d%d",&n,&m,&k);
k=min(k,);
ll ans=;
if(n>m)swap(n,m);
for(int i=,last=i;i<=n;i=last+){
last=min(n/(n/i),m/(m/i));
ans+=(ll)(cnt[last][k]-cnt[i-][k])*(n/i)*(m/i);
}
//printf("%lld\n",ans);
printf("%I64d\n",ans);
}
}
hdu4746莫比乌斯反演进阶题的更多相关文章
- SPOJ VLATTICE Visible Lattice Points (莫比乌斯反演基础题)
Visible Lattice Points Consider a N*N*N lattice. One corner is at (0,0,0) and the opposite one is at ...
- 莫比乌斯反演进阶-洛谷P2257/HDU5663
学了莫比乌斯反演之后对初阶问题没有任何问题了,除法分块也码到飞起,但是稍微变形我就跪了.用瞪眼观察法观察别人题解观察到主要内容除了柿子变形之外,主要就是对于miu函数的操作求前缀和.进而了解miu函数 ...
- hdu4746莫比乌斯反演+分块
http://blog.csdn.net/mowayao/article/details/38875021 题意: 5000组样例. 问你[1,n] 和 [1,m]中有多少对数的GCD的素因子个数小于 ...
- BZOJ1011 莫比乌斯反演(基础题
[题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=1101 [题目大意] 求[1,n][1,m]内gcd=k的情况 [题解] 考虑求[1,n ...
- hdu1695莫比乌斯反演模板题
hdu1695 求1<=i<=n&&1<=j<=m,gcd(i,j)=k的(i,j)的对数 最后的结果f(k)=Σ(1<=x<=n/k)mu[x]* ...
- BZOJ 2440 完全平方数 莫比乌斯反演模板题
题目链接: https://www.lydsy.com/JudgeOnline/problem.php?id=2440 题目大意: 求第k个无平方因子的数 思路: 二分答案x,求1-x中有多少个平方因 ...
- HDU 4746 (莫比乌斯反演) Mophues
这道题看巨巨的题解看了好久,好久.. 本文转自hdu4746(莫比乌斯反演) 题意:给出n, m, p,求有多少对a, b满足gcd(a, b)的素因子个数<=p,(其中1<=a<= ...
- 【BZOJ2820】YY的GCD(莫比乌斯反演)
[BZOJ2820]YY的GCD(莫比乌斯反演) 题面 讨厌权限题!!!提供洛谷题面 题解 单次询问\(O(n)\)是做过的一模一样的题目 但是现在很显然不行了, 于是继续推 \[ans=\sum_{ ...
- 【UVa11426】GCD - Extreme (II)(莫比乌斯反演)
[UVa11426]GCD - Extreme (II)(莫比乌斯反演) 题面 Vjudge 题解 这.. 直接套路的莫比乌斯反演 我连式子都不想写了 默认推到这里把.. 然后把\(ans\)写一下 ...
随机推荐
- java中functional interface的分类和使用
目录 简介 Functional Interface Function:一个参数一个返回值 BiFunction:接收两个参数,一个返回值 Supplier:无参的Function Consumer: ...
- Spring5参考指南:Environment
文章目录 Profiles PropertySource 使用@PropertySource Spring的Environment接口有两个关键的作用:1. Profile, 2.properties ...
- Handler 机制(一)—— Handler的实现流程
由于Android采用的是单线程模式,开发者无法在子线程中更新 UI,所以系统给我提供了 Handler 这个类来实现 UI 更新问题.本贴主要说明 Handler 的工作流程. 1. Handler ...
- MYSQL隔离级别 与 锁
1.四种隔离级别下数据不一致的情况 脏读 不可重复读 幻读 RU 是 是 是 RC(快照读) 否 是 是 RC(当前读) 否 否 是 RR(快照读) 否 否 是 RR(当前读) 否 否 否 Ser ...
- MySQL简介和安装
一.关系型数据库初识 1.1 什么是数据库? 数据库(Database)是按照数据结构来组织.存储和管理数据的仓库,每个数据库都有一个或多个不同的API用于创建,访问,管理,搜索和复制所保存的数据.我 ...
- Vue 2.x折腾记 - (17) 基于Ant Design Vue 封装一个配置式的表单组件
前言 写了个类似上篇搜索的封装,但是要考虑的东西更多. 具体业务比展示的代码要复杂,篇幅太长就不引入了. 效果图 2019-04-25 添加了下拉多选的渲染,并搜索默认过滤文本而非值 简化了渲染的子组 ...
- Spark学习笔记(一)
概念: Spark是加州大学伯克利分校AMP实验室,开发的通用内存并行计算框架. 支持用scala.java和Python等语言编写应用程序.相较于Hdoop,往往有更好的运行效率. Spark包括了 ...
- Codeforces Round #618 (Div. 2)-B. Assigning to Classes
Reminder: the median of the array [a1,a2,-,a2k+1] of odd number of elements is defined as follows: l ...
- 图论--2-SAT--暴力染色法求字典序最小模版
#include <cstdio> #include <cstring> #include <stack> #include <queue> #incl ...
- java基于socket的网络通信,实现一个服务端多个客户端的群聊,传输文件功能,界面使用Swing
最近在复习java的io流及网络编程.但复习写那些样板程序总是乏味的.便准备写个项目来巩固.想来想去还是聊天项目比较好玩.如果日后完成的比较好自己也可以用(哈哈哈).并且自己后面也要继续巩固java多 ...