Mophues

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 327670/327670 K (Java/Others)
Total Submission(s): 1922    Accepted Submission(s): 791

Problem Description
As we know, any positive integer C ( C >= 2 ) can be written as the multiply of some prime numbers:
    C = p1×p2× p3× ... × pk
which p1, p2 ... pk are all prime numbers.For example, if C = 24, then:
    24 = 2 × 2 × 2 × 3
    here, p1 = p2 = p3 = 2, p4 = 3, k = 4

Given two integers P and C. if k<=P( k is the number of C's prime factors), we call C a lucky number of P.

Now, XXX needs to count the number of pairs (a, b), which 1<=a<=n , 1<=b<=m, and gcd(a,b) is a lucky number of a given P ( "gcd" means "greatest common divisor").

Please note that we define 1 as lucky number of any non-negative integers because 1 has no prime factor.

 
Input
The first line of input is an integer Q meaning that there are Q test cases.
Then Q lines follow, each line is a test case and each test case contains three non-negative numbers: n, m and P (n, m, P <= 5×105. Q <=5000).
 
Output
For each test case, print the number of pairs (a, b), which 1<=a<=n , 1<=b<=m, and gcd(a,b) is a lucky number of P.
 
Sample Input
2
10 10 0
10 10 1
 
Sample Output
63
93
 
http://blog.csdn.net/wh2124335/article/details/11846661 转载自此
 
记录一下自己的思路
未简化过的代码核心应该是这样的
 
   for(int i=;i<=n;++i)//枚举每个因子
if(d[i]<=k)//如果因子的素数质因子小于等于k
for(int j=i;j<=n;j+=i) ans+=u(j/i)*(n/i)*(m/i)//枚举F(i);

利用的是第二个,然后可以发现,对于每个数字i,他的倍数j的系数都要加上u[j/i],可以与处理出来U(N),其中U(i)就是u[i/第一个因子]+u[i/第二个因子]+....(这里的U先不考虑素因子个数限制)

那么上述式子就可以化简成为

for(int i=;i<=n;++i) ans+=U(i)*(n/i)*(m/i);//直接枚举

然后U(i)考虑素因子个数限制的话,那么显然预处理也是可以搞出来的,详细见代码,代码里的cnt[N][19]就是U考虑限制的。

然后就是普通的分块操作,为了简化时间,因为W=(n/i)*(m/i),i倘若在一定范围内,这个W是不变的,所以可以加速。

所以最后就是这样了

for(int i=,last=i;i<=n;i=last+){
last=min(n/(n/i),m/(m/i));
ans+=(ll)(cnt[last][k]-cnt[i-][k])*(n/i)*(m/i);
}
#include<cstdio>
#include<cstring>
#include<iostream>
#include<vector>
using namespace std;
const int maxn = ;
typedef long long ll;
int mu[maxn],sum[maxn],num[maxn];
ll cnt[maxn][];
bool flag[maxn];
vector<int>prime;
void init(){
mu[]=;
for(int i=;i<maxn;i++){
if(!flag[i]){
prime.push_back(i);
mu[i]=-;
num[i]=;
}
for(int j=;j<prime.size()&&i*prime[j]<maxn;j++){
flag[i*prime[j]]=true;
num[i*prime[j]]=num[i]+;
if(i%prime[j])mu[i*prime[j]]=-mu[i];
else {mu[i*prime[j]]=;break;}
}
}
for(int i=;i<maxn;i++){
for(int j=i;j<maxn;j+=i){
cnt[j][num[i]]+=mu[j/i];
}
}
for(int i=;i<maxn;i++){
for(int j=;j<;j++){
cnt[i][j]+=cnt[i][j-];
}
}
for(int i=;i<maxn;i++){
for(int j=;j<;j++){
cnt[i][j]+=cnt[i-][j];
}
}
}
int main(){
init();
int q;
scanf("%d",&q);
while(q--){
int n,m,k;
scanf("%d%d%d",&n,&m,&k);
k=min(k,);
ll ans=;
if(n>m)swap(n,m);
for(int i=,last=i;i<=n;i=last+){
last=min(n/(n/i),m/(m/i));
ans+=(ll)(cnt[last][k]-cnt[i-][k])*(n/i)*(m/i);
}
//printf("%lld\n",ans);
printf("%I64d\n",ans);
}
}
 

hdu4746莫比乌斯反演进阶题的更多相关文章

  1. SPOJ VLATTICE Visible Lattice Points (莫比乌斯反演基础题)

    Visible Lattice Points Consider a N*N*N lattice. One corner is at (0,0,0) and the opposite one is at ...

  2. 莫比乌斯反演进阶-洛谷P2257/HDU5663

    学了莫比乌斯反演之后对初阶问题没有任何问题了,除法分块也码到飞起,但是稍微变形我就跪了.用瞪眼观察法观察别人题解观察到主要内容除了柿子变形之外,主要就是对于miu函数的操作求前缀和.进而了解miu函数 ...

  3. hdu4746莫比乌斯反演+分块

    http://blog.csdn.net/mowayao/article/details/38875021 题意: 5000组样例. 问你[1,n] 和 [1,m]中有多少对数的GCD的素因子个数小于 ...

  4. BZOJ1011 莫比乌斯反演(基础题

    [题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=1101 [题目大意] 求[1,n][1,m]内gcd=k的情况 [题解] 考虑求[1,n ...

  5. hdu1695莫比乌斯反演模板题

    hdu1695 求1<=i<=n&&1<=j<=m,gcd(i,j)=k的(i,j)的对数 最后的结果f(k)=Σ(1<=x<=n/k)mu[x]* ...

  6. BZOJ 2440 完全平方数 莫比乌斯反演模板题

    题目链接: https://www.lydsy.com/JudgeOnline/problem.php?id=2440 题目大意: 求第k个无平方因子的数 思路: 二分答案x,求1-x中有多少个平方因 ...

  7. HDU 4746 (莫比乌斯反演) Mophues

    这道题看巨巨的题解看了好久,好久.. 本文转自hdu4746(莫比乌斯反演) 题意:给出n, m, p,求有多少对a, b满足gcd(a, b)的素因子个数<=p,(其中1<=a<= ...

  8. 【BZOJ2820】YY的GCD(莫比乌斯反演)

    [BZOJ2820]YY的GCD(莫比乌斯反演) 题面 讨厌权限题!!!提供洛谷题面 题解 单次询问\(O(n)\)是做过的一模一样的题目 但是现在很显然不行了, 于是继续推 \[ans=\sum_{ ...

  9. 【UVa11426】GCD - Extreme (II)(莫比乌斯反演)

    [UVa11426]GCD - Extreme (II)(莫比乌斯反演) 题面 Vjudge 题解 这.. 直接套路的莫比乌斯反演 我连式子都不想写了 默认推到这里把.. 然后把\(ans\)写一下 ...

随机推荐

  1. Kubernetes 持久化存储是个难题,解决方案有哪些?\n

    像Kubernetes 这样的容器编排工具正在彻底改变应用程序的开发和部署方式.随着微服务架构的兴起,以及基础架构与应用程序逻辑从开发人员的角度解耦,开发人员越来越关注构建软件和交付价值. Kuber ...

  2. Eclipse新建类的时候如何自动添加注释(作者,时间,版本等信息)

    为什么80%的码农都做不了架构师?>>>   方法一:Eclipse中设置在创建新类时自动生成注释 windows–>preference  Java–>Code Sty ...

  3. 压缩工具gzip、bzip2、xz的使用

    2019独角兽企业重金招聘Python工程师标准>>> 本文使用 为了要压缩 常见压缩格式 压缩工具 gzip压缩工具 bz2压缩工具 xz压缩工具 为什么要压缩 为什么要压缩?文件 ...

  4. Code force-CodeCraft-20 (Div. 2) D. Nash Matrix 详解(DFS构造)

    D. Nash Matrix time limit per test2 seconds memory limit per test256 megabytes inputstandard input o ...

  5. Codeforce-CodeCraft-20 (Div. 2)-B. String Modification (找规律+模拟)

    Vasya has a string s of length n. He decides to make the following modification to the string: Pick ...

  6. IO与反射机制总结

    IO与反射机制全面总结 一.file类:属于java.io包中kkb 作用:操作文件或目录 file既可以表示文件,也可以表示目录,也可以表示盘符.利用他可以用来对文件进行操作. file中常用的构造 ...

  7. andorid jar/库源码解析之Dagger/Dagger2

    目录:andorid jar/库源码解析 Dagger.Dagger2: 作用: 1.用于解耦Activity和业务逻辑 2.在使用业务的时候,不需要重复编写new代码. 3.当业务变化的时候,不需要 ...

  8. LeetCode--Sort Array By Parity && N-Repeated Element in Size 2N Array (Easy)

    905. Sort Array By Parity (Easy)# Given an array A of non-negative integers, return an array consist ...

  9. qt获取指定目录下符合条件的文件路径

    1)设置名称过滤器 QDir * dir = new QDir(路径); QStringList filter; Filter << QStringLiteral(“筛选的文件条件,如.x ...

  10. input在IOS中的聚焦问题

    关于input输入框在iPhone手机中的聚焦问题,开发中是会经常遇到的,在一般的浏览器中,我们一般是通过 document.getElementById('opop').focus(); 来获取焦点 ...