1、准备工作

1.1 流程图

2、环境安装

2.1、在Ubuntu中需要安装redis

安装redis
$sudo apt-get update
$sudo apt-get install redis-server
启动redis
$redis-server
连接redis
$redis-cli
$redis-cli -h ip -a
安装Python操作redis的包
pip install redis
重启redis
sudo service reids restart

安装redis

redis默认绑定的ip为127.0.0.1其他电脑无法访问Ubuntu的redis

重启redis服务 service redis restart

查看绑定端口

在wind上telnet ip  6379 成功说明成功

2.2、安装celery

pip install celery

2、开始使用celery

2、1基本应用

在/home/zbwu103/celery 文件中创建一个tasks.py的任务文件

#task.py 

from celery import Celery

app = Celery('tasks',
broker='redis://192.168.1.111',
backend='redis://192.168.1.111'
#redis://密码@ip
) @app.task
def add(x,y):
print("running...",x,y)
return x+y

在home/zbwu103/celery的目录启动监听任务

#打印日志的模式运行
celery -A tasks worker --loglevel=info

在开一个终端,到/home/zbwu103/celery用Python进入命令行运行

from tasks import add
t = add.delay(4,5) #t.result.ready() 查看任务是否完成,完成返回True,未完成返回False
#t.get() 返回完成之后的结果
#t.task_id 返回任务的唯一ID号,可以通过ID查询到任务

上面任务都是在终端上运行,如果终端关闭tasks也会终止。

所以需要任务在后台运行

celery multi stop w1 停止 w1

2.2 、在项目中如何使用celery

from __future__ import absolute_import, unicode_literals
from celery import Celery app = Celery('my_proj',
broker='redis://192.168.1.111',
backend='redis://192.168.1.111',
include=['myp_roj.tasks']) app.conf.update(
result_expires=3600,
)
if __name__ == '__main__':
app.start()

celery

from __future__ import absolute_import, unicode_literals
import subprocess
from .celery import app @app.task
def add(x,y):
return x+y @app.task
def run_cmd(cmd):
obj = subprocess.Popen(cmd,shell=True,stdout=subprocess.PIPE,stderr=subprocess.PIPE)
return obj.stdout.read().decode('utf-8')

tasks.py

在my_proj同级目录启动

查看任务启动情况

ps -ef |grep celery

2.3 、celery 定时任务

celery使用beat来执行celert beat 来实现定时任务

worker定时任务

from celery import Celery
from celery.schedules import crontab app = Celery('task',
broker='redis://192.168.1.111',
backend='redis://192.168.1.111') @app.on_after_configure.connect
def setup_periodic_tasks(sender, **kwargs):
# Calls test('hello') every 10 seconds.
sender.add_periodic_task(10.0, test.s('hello'), name='add every 10') # Calls test('world') every 30 seconds
sender.add_periodic_task(30.0, test.s('world'), expires=10) # Executes every Monday morning at 7:30 a.m.
sender.add_periodic_task(
crontab(hour=21, minute=26, day_of_week='Sum'),
test.s('Happy Mondays!'),
) @app.task
def test(arg):
print('runing test.....')
print(arg)

periodic_task.py

启动定时任务

celery -A periodic_task worker

另外开一个任务调度区不断的检测你的任务计划

celery -A periodic_task beat

2.4、celery和django配置一起使用

在setting同级的目录中新建一个celery.py的文件配置celery基本的配置

from __future__ import absolute_import, unicode_literals
import os
from celery import Celery # set the default Django settings module for the 'celery' program.
os.environ.setdefault('DJANGO_SETTINGS_MODULE', 'CeleryTest.settings') app = Celery('CeleryTest') # Using a string here means the worker don't have to serialize
# the configuration object to child processes.
# - namespace='CELERY' means all celery-related configuration keys
# should have a `CELERY_` prefix.
app.config_from_object('django.conf:settings', namespace='CELERY') # Load task modules from all registered Django app configs.
app.autodiscover_tasks() @app.task(bind=True)
def debug_task(self):
print('Request: {0!r}'.format(self.request))

celery.py

在setting.py同级的目录配置__init__.py

from __future__ import absolute_import, unicode_literals

# This will make sure the app is always imported when
# Django starts so that shared_task will use this app.
from .celery import app as celery_app __all__ = ['celery_app']

__init__.py

在APP的目录里面新建一个tasks.py的任务来填写任务

#app01/tasks.py
# Create your tasks here
from __future__ import absolute_import, unicode_literals
from celery import shared_task
import time @shared_task
def add(x, y):
print("running task add,我是windows ")
time.sleep(1)
return x + y @shared_task
def mul(x, y):
return x * y @shared_task
def xsum(numbers):
return sum(numbers)

tasks.py

从views中调用任务

/app01/view.py
from django.shortcuts import render,HttpResponse
from app01 import tasks
from celery.result import AsyncResult def index(request): res = tasks.add.delay(5,999) print("res:",res)
print(res.status)
# import pdb
# pdb.set_trace()
return HttpResponse(res.task_id) def task_res(request):
#通过ID获取结果
result = AsyncResult(id="be4933c0-ed9b-4a04-ade8-79f4c57cfc74") #return HttpResponse(result.get())
return HttpResponse(result.status)

views.py

2.5、在django中使用定时的任务

在Ubuntu中安装django-celery-beat插件

pip3 install -i https://pypi.tuna.tsinghua.edu.cn/simple django-celery-beat

在setting中增加APP

’‘django_celery_beat",

使用Python manage.py migrate 生成表结构

直接可以在django的admin配置任务

之后在Ubuntu中启动celery worker

celery -A CeleryTest worker -l info 

启动调度器来监控定时任务

celery -A CeleryTest beat -l info -S django

注意,经测试,每添加或修改一个任务,celery beat都需要重启一次,要不然新的配置不会被celery beat进程读到

celery异步消息队列的使用的更多相关文章

  1. 异步消息队列Celery

    Celery是异步消息队列, 可以在很多场景下进行灵活的应用.消息中包含了执行任务所需的的参数,用于启动任务执行, suoy所以消息队列也可以称作 在web应用开发中, 用户触发的某些事件需要较长事件 ...

  2. C#实现异步消息队列

    原文:C#实现异步消息队列 拿到新书<.net框架设计>,到手之后迅速读了好多,虽然这本书不像很多教程一样从头到尾系统的讲明一些知识,但是从项目实战角度告诉我们如何使用我们的知识,从这本书 ...

  3. 八.利用springAMQP实现异步消息队列的日志管理

    经过前段时间的学习和铺垫,已经对spring amqp有了大概的了解.俗话说学以致用,今天就利用springAMQP来完成一个日志管理模块.大概的需求是这样的:系统中有很多地方需要记录操作日志,比如登 ...

  4. C#后台异步消息队列实现

    简介 基于生产者消费者模式,我们可以开发出线程安全的异步消息队列. 知识储备 什么是生产者消费者模式? 为了方便理解,我们暂时将它理解为垃圾的产生到结束的过程. 简单来说,多住户产生垃圾(生产者)将垃 ...

  5. 【Redis】redis异步消息队列+Spring自定义注解+AOP方式实现系统日志持久化

    说明: SSM项目中的每一个请求都需要进行日志记录操作.一般操作做的思路是:使用springAOP思想,对指定的方法进行拦截.拼装日志信息实体,然后持久化到数据库中.可是仔细想一下会发现:每次的客户端 ...

  6. 三.RabbitMQ之异步消息队列(Work Queue)

    上一篇文章简要介绍了RabbitMQ的基本知识点,并且写了一个简单的发送和接收消息的demo.这一篇文章继续介绍关于Work Queue(工作队列)方面的知识点,用于实现多个工作进程的分发式任务. 一 ...

  7. [源码解析] 消息队列 Kombu 之 基本架构

    [源码解析] 消息队列 Kombu 之 基本架构 目录 [源码解析] 消息队列 Kombu 之 基本架构 0x00 摘要 0x01 AMQP 1.1 基本概念 1.2 工作过程 0x02 Poll系列 ...

  8. 开源消息队列:NetMQ

    NetMQ 是  ZeroMQ的C#移植版本. ZeroMQ是一个轻量级的消息内核,它是对标准socket接口的扩展.它提供了一种异步消息队列,多消息模式,消息过滤(订阅),对多种传输协议的无缝访问. ...

  9. 消息队列NetMQ 原理分析1-Context和ZObject

    前言 介绍 NetMQ是ZeroMQ的C#移植版本,它是对标准socket接口的扩展.它提供了一种异步消息队列,多消息模式,消息过滤(订阅),对多种传输协议的无缝访问. 当前有2个版本正在维护,版本3 ...

随机推荐

  1. Firefox 66 发布,阻止网站自动播放声音

    Firefox 66 发布了,此版本在桌面版中带来的新特性包括: Firefox 现在阻止网站自动播放声音,如果需要可以单独调整 改进的搜索体验: 当打开许多选项卡时,可以更快地查找特定网页:现在可以 ...

  2. 爱创课堂每日一题第十五题HTTP和HTTPS?

    HTTP协议通常承载于TCP协议之上,在HTTP和TCP之间添加一个安全协议层(SSL或TSL),这个时候,就成了我们常说的HTTPS.默认HTTP的端口号为80,HTTPS的端口号为443. 转载于 ...

  3. 一句话总结JS构造函数、原型和实例的关系

    "每个构造函数都有一个原型对象, 原型对象都包含一个指向构造函数的指针, 实例都包含一个指向原型对象的内部指针." --此段话摘自<JavaScript高级程序设计>. ...

  4. Knapsack Problem

    0-1背包 描述:N件物品,第i件的重量是w[i],价值v[i].有一个容量为W的背包,求将哪些物品放入背包可使总价值最大.每件物品可以用0或1次. 分析:根据题意,可以写出表达式: \[max(\S ...

  5. Jaba_Web--JDBC 删除记录操作模板

    import java.sql.Connection; import java.sql.DriverManager; import java.sql.PreparedStatement; import ...

  6. Codeforces Round #637 (Div. 2) 题解

    A. Nastya and Rice 网址:https://codeforces.com/contest/1341/problem/A Nastya just made a huge mistake ...

  7. 使用Python实现批量ping操作

    在日常的工作中,我们通常会有去探测目标主机是否存活的应用场景,单个的服务器主机可以通过计算机自带的DOS命令来执行,但是业务的存在往往不是单个存在的,通常都是需要去探测C段的主机(同一个网段下的存活主 ...

  8. andorid jar/库源码解析之Bolts

    目录:andorid jar/库源码解析 Bolts: 作用: 用于链式执行跨线程代码,且传递数据 栗子: Task.call(new Callable<Boolean>() { @Ove ...

  9. andorid jar/库源码解析之Butterknife

    目录:andorid jar/库源码解析 Butterknife: 作用: 用于初始化界面控件,控件方法,通过注释进行绑定控件和控件方法 栗子: public class MainActivity e ...

  10. HTML往div中赋值

    HTML中往div赋值 <div id="mazey">content</div> 使用JavaScript: var mazey=document.get ...