一、切片

取一个list或tuple的部分元素是非常常见的操作。比如,一个list如下:

>>> L = ['Michael', 'Sarah', 'Tracy', 'Bob', 'Jack']

取前3个元素,应该怎么做?

笨办法:

>>> [L[0], L[1], L[2]]
['Michael', 'Sarah', 'Tracy']

之所以是笨办法是因为扩展一下,取前N个元素就没辙了。

取前N个元素,也就是索引为0-(N-1)的元素,可以用循环:

>>> r = []
>>> n = 3
>>> for i in range(n):
... r.append(L[i])
>>> r
['Michael', 'Sarah', 'Tracy']

对这种经常取指定索引范围的操作,用循环十分繁琐,因此,Python提供了切片(Slice)操作符,L[0:3],能大大简化这种操作。

对应上面的问题,取前3个元素,用一行代码就可以完成切片:

>>> L[0:3]
['Michael', 'Sarah', 'Tracy']

L[0:3]表示,从索引0开始取,直到索引3为止,但不包括索引3。即索引012,正好是3个元素。

如果第一个索引是0,还可以省略:

>>> L[:3]
['Michael', 'Sarah', 'Tracy']

也可以从索引1开始,取出2个元素出来:

>>> L[1:3]
['Sarah', 'Tracy']

类似的,既然Python支持L[-1]取倒数第一个元素,那么它同样支持倒数切片,

当第一个元素是负数时,此时的第二个元素最大为0,不能是正数。

>>> L[-2:]
['Bob', 'Jack']
>>> L[-2:-1]
['Bob']
>>> L[-2:1]
[ ]
>>> L[1:-1]
[ 'Sarah', 'Tracy', 'Bob']

记住倒数第一个元素的索引是-1

切片操作十分有用。我们先创建一个0-99的数列:

>>> L = list(range(100))
>>> L
[0, 1, 2, 3, ..., 99]

可以通过切片轻松取出某一段数列。比如前10个数:

>>> L[:10]
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

后10个数:

>>> L[-10:]
[90, 91, 92, 93, 94, 95, 96, 97, 98, 99]

前11-20个数:

>>> L[10:20]
[10, 11, 12, 13, 14, 15, 16, 17, 18, 19]

前10个数,每两个取一个:

>>> L[:10:2]
[0, 2, 4, 6, 8]

所有数,每5个取一个:

>>> L[::5]
[0, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95]

甚至什么都不写,只写[:]就可以原样复制一个list:

>>> L[:]
[0, 1, 2, 3, ..., 99]

tuple也是一种list,唯一区别是tuple不可变。因此,tuple也可以用切片操作,只是操作的结果仍是tuple:

>>> (0, 1, 2, 3, 4, 5)[:3]
(0, 1, 2)

字符串'xxx'也可以看成是一种list,每个元素就是一个字符。因此,字符串也可以用切片操作,只是操作结果仍是字符串:

>>> 'ABCDEFG'[:3]
'ABC'
>>> 'ABCDEFG'[::2]
'ACEG'

在很多编程语言中,针对字符串提供了很多各种截取函数(例如,substring),其实目的就是对字符串切片。Python没有针对字符串的截取函数,只需要切片一个操作就可以完成,非常简单。

二、迭代

如果给定一个list或tuple,我们可以通过for循环来遍历这个list或tuple,这种遍历我们称为迭代(Iteration)。

在Python中,迭代是通过for ... in来完成的,而很多语言比如C语言,迭代list是通过下标完成的,比如Java代码:

for (i=0; i<list.length; i++) {
n = list[i];
}

可以看出,Python的for循环抽象程度要高于C的for循环,因为Python的for循环不仅可以用在list或tuple上,还可以作用在其他可迭代对象上。

list这种数据类型虽然有下标,但很多其他数据类型是没有下标的,但是,只要是可迭代对象,无论有无下标,都可以迭代,比如dict就可以迭代:

>>> d = {'a': 1, 'b': 2, 'c': 3}
>>> for v in d.values():
... print(v)
...
a
c
b

因为dict的存储不是按照list的方式顺序排列,所以,迭代出的结果顺序很可能不一样。

默认情况下,dict迭代的是key。

如果要迭代value,可以用for value in d.values()

如果要同时迭代key和value,可以用for k, v in d.items()

>>>d = {'a': 1, 'b': 2, 'c': 3}
>>>for value in d.items():
... print(value)
...
('a', 1)
('b', 2)
('c', 3)

由于字符串也是可迭代对象,因此,也可以作用于for循环:

>>> for ch in 'ABC':
... print(ch)
...
A
B
C

所以,当我们使用for循环时,只要作用于一个可迭代对象,for循环就可以正常运行,而我们不太关心该对象究竟是list还是其他数据类型。

那么,如何判断一个对象是可迭代对象呢?方法是通过collections模块的Iterable类型判断:

>>> from collections import Iterable
>>> isinstance('abc', Iterable) # str是否可迭代
True
>>> isinstance([1,2,3], Iterable) # list是否可迭代
True
>>> isinstance(123, Iterable) # 整数是否可迭代
False

最后一个小问题,如果要对list实现类似Java那样的下标循环怎么办?

Python内置的enumerate函数可以把一个list变成索引-元素对,这样就可以在for循环中同时迭代索引和元素本身:

>>> for i, value in enumerate(['A', 'B', 'C']):
... print(i, value)
...
0 A
1 B
2 C

上面的for循环里,同时引用了两个变量,在Python里是很常见的,比如下面的代码:

>>> for x, y in [(1, 1), (2, 4), (3, 9)]:
... print(x, y)
...
1 1
2 4
3 9

三、列表生成式

列表生成式即List Comprehensions,是Python内置的非常简单却强大的可以用来创建list的生成式。

举个例子,要生成list [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]可以用list(range(1, 11)),不包含第二个元素

>>> list(range(1, 11))
[1, 2, 3, 4, 5, 6, 7, 8, 9, 10] >>>a=list(range(11))
[0,1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

但如果要生成[1x1, 2x2, 3x3, ..., 10x10]怎么做?方法一是循环:

>>> L = []
>>> for x in range(1, 11):
... L.append(x * x)
...
>>> L
[1, 4, 9, 16, 25, 36, 49, 64, 81, 100]

但是循环太繁琐,而列表生成式则可以用一行语句代替循环生成上面的list:

>>> [x * x for x in range(1, 11)]
[1, 4, 9, 16, 25, 36, 49, 64, 81, 100]

写列表生成式时,把要生成的元素x * x放到前面,后面跟for循环,就可以把list创建出来,十分有用,多写几次,很快就可以熟悉这种语法。

for循环后面还可以加上if判断,这样我们就可以筛选出仅偶数的平方:

>>> [x * x for x in range(1, 11) if x % 2 == 0]
[4, 16, 36, 64, 100]

还可以使用两层循环,可以生成全排列:

>>> [m + n for m in 'ABC' for n in 'XYZ']
['AX', 'AY', 'AZ', 'BX', 'BY', 'BZ', 'CX', 'CY', 'CZ']

三层和三层以上的循环就很少用到了。

运用列表生成式,可以写出非常简洁的代码。例如,列出当前目录下的所有文件和目录名:os.listdir('.'),可以通过一行代码实现:

>>> import os # 导入os模块,模块的概念后面讲到
>>> [d for d in os.listdir('.')] # os.listdir可以列出文件和目录
['.emacs.d', '.ssh', '.Trash', 'Adlm', 'Applications', 'Desktop', 'Documents', 'Downloads', 'Library', 'Movies', 'Music', 'Pictures', 'Public', 'VirtualBox VMs', 'Workspace', 'XCode']
 

for循环其实可以同时使用两个甚至多个变量,比如dictitems()可以同时迭代key和value:

>>> d = {'x': 'A', 'y': 'B', 'z': 'C' }
>>> for k, v in d.items():
... print(k, '=', v)
...
x = A
y = B
z = C

因此,列表生成式也可以使用两个变量来生成list:

>>> d = {'x': 'A', 'y': 'B', 'z': 'C' }
>>> p1=[k+v for k,v in d.items()]
>>> p=[k+'='+v for k,v in d.items()]
>>> print(p1,p) ['xA', 'yB', 'zC'] ['x=A', 'y=B', 'z=C']

最后把一个list中所有的字符串变成小写:

>>> L = ['Hello', 'World', 'ROSE', 'MARy']
>>> [s.lower() for s in L]
['hello', 'world', 'rose', 'mary']

四、生成器

通过列表生成式,我们可以直接创建一个列表。但是,受到内存限制,列表容量肯定是有限的。而且,创建一个包含100万个元素的列表,不仅占用很大的存储空间,如果我们仅仅需要访问前面几个元素,那后面绝大多数元素占用的空间都白白浪费了。

所以,如果列表元素可以按照某种算法推算出来,那我们是否可以在循环的过程中不断推算出后续的元素呢?这样就不必创建完整的list,从而节省大量的空间。在Python中,这种一边循环一边计算的机制,称为生成器:generator。

要创建一个generator,有很多种方法。

1)第一种方法很简单,只要把一个列表生成式的[]改成(),就创建了一个generator:

>>> L = [x * x for x in range(10)]
>>> L
[0, 1, 4, 9, 16, 25, 36, 49, 64, 81]
>>> g = (x * x for x in range(10))
>>> g
<generator object <genexpr> at 0x1022ef630>

创建Lg的区别仅在于最外层的[]()L是一个list,而g是一个generator。

我们可以直接打印出list的每一个元素,但我们怎么打印出generator的每一个元素呢?

如果要一个一个打印出来,可以通过next()函数获得generator的下一个返回值:

>>> next(g)
0
>>> next(g)
1
>>> next(g)
4
>>> next(g)
9
>>> next(g)
16
>>> next(g)
25
>>> next(g)
36
>>> next(g)
49
>>> next(g)
64
>>> next(g)
81
>>> next(g)
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
StopIteration

我们讲过,generator保存的是算法,每次调用next(g),就计算出g的下一个元素的值,直到计算到最后一个元素,没有更多的元素时,抛出StopIteration的错误。

当然,上面这种不断调用next(g)实在是太变态了,正确的方法是使用for循环,因为generator也是可迭代对象:

>>> g = (x * x for x in range(10))
>>> for n in g:
... print(n)
...
0
1
4
9
16
25
36
49
64
81

所以,我们创建了一个generator后,基本上永远不会调用next(),而是通过for循环来迭代它,并且不需要关心StopIteration的错误。

generator非常强大。如果推算的算法比较复杂,用类似列表生成式的for循环无法实现的时候,还可以用函数来实现。

比如,著名的斐波拉契数列(Fibonacci),除第一个和第二个数外,任意一个数都可由前两个数相加得到:

1, 1, 2, 3, 5, 8, 13, 21, 34, ...

斐波拉契数列用列表生成式写不出来,但是,用函数把它打印出来却很容易:

def fib(max):
n, a, b = 0, 0, 1
while n < max:
print(b)
a, b = b, a + b
n = n + 1
return 'done'

注意,赋值语句:

a, b = b, a + b

相当于:

t = (b, a + b) # t是一个tuple
a = t[0]
b = t[1]

但不必显式写出临时变量t就可以赋值。

上面的函数可以输出斐波那契数列的前N个数:

>>> fib(6)
1
1
2
3
5
8
'done'

仔细观察,可以看出,fib函数实际上是定义了斐波拉契数列的推算规则,可以从第一个元素开始,推算出后续任意的元素,这种逻辑其实非常类似generator。

也就是说,上面的函数和generator仅一步之遥。要把fib函数变成generator,只需要把print(b)改为yield b就可以了:

def fib(max):
n, a, b = 0, 0, 1
while n < max:
yield b
a, b = b, a + b
n = n + 1
return 'done'

这就是定义generator的另一种方法。

2)如果一个函数定义中包含yield关键字,那么这个函数就不再是一个普通函数,而是一个generator:

>>> f = fib(6)
1
1
2
3
5
8
<generator object fib at 0x104feaaa0>

这里,最难理解的就是generator和函数的执行流程不一样。函数是顺序执行,遇到return语句或者最后一行函数语句就返回。而变成generator的函数,在每次调用next()的时候执行,遇到yield语句返回,再次执行时从上次返回的yield语句处继续执行。

举个简单的例子,定义一个generator,依次返回数字1,3,5:

def odd():
print('step 1')
yield 1
print('step 2')
yield(3)
print('step 3')
yield(5)

调用该generator时,首先要生成一个generator对象,然后用next()函数不断获得下一个返回值:

>>> o = odd()
>>> next(o)
step 1
1
>>> next(o)
step 2
3
>>> next(o)
step 3
5
>>> next(o)
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
StopIteration

可以看到,odd不是普通函数,而是generator,在执行过程中,遇到yield就中断,下次又继续执行。执行3次yield后,已经没有yield可以执行了,所以,第4次调用next(o)就报错。

回到fib的例子,我们在循环过程中不断调用yield,就会不断中断。当然要给循环设置一个条件来退出循环,不然就会产生一个无限数列出来。

同样的,把函数改成generator后,我们基本上从来不会用next()来获取下一个返回值,而是直接使用for循环来迭代:

同样的,把函数改成generator后,我们基本上从来不会用next()来获取下一个返回值,而是直接使用for循环来迭代:

>>> for n in fib(6):
... print(n)
...
1
1
2
3
5
8

但是用for循环调用generator时,发现拿不到generator的return语句的返回值。如果想要拿到返回值,必须捕获StopIteration错误,返回值包含在StopIterationvalue中:

>>> g = fib(6)
>>> while True:
... try:
... x = next(g)
... print('g:', x)
... except StopIteration as e:
... print('Generator return value:', e.value)
... break
...
g: 1
g: 1
g: 2
g: 3
g: 5
g: 8
Generator return value: done

输入:  

输出:

五、迭代器

我们已经知道,可以直接作用于for循环的数据类型有以下几种:

一类是集合数据类型,如listtupledictsetstr等;

一类是generator,包括生成器和带yield的generator function。

这些可以直接作用于for循环的对象统称为可迭代对象:Iterable

可以使用isinstance()判断一个对象是否是Iterable对象:

>>> from collections import Iterable
>>> isinstance([], Iterable)
True
>>> isinstance({}, Iterable)
True
>>> isinstance('abc', Iterable)
True
>>> isinstance((x for x in range(10)), Iterable)
True
>>> isinstance(100, Iterable)
False

而生成器不但可以作用于for循环,还可以被next()函数不断调用并返回下一个值,直到最后抛出StopIteration错误表示无法继续返回下一个值了。

可以被next()函数调用并不断返回下一个值的对象称为迭代器:Iterator

可以使用isinstance()判断一个对象是否是Iterator对象:

>>> from collections import Iterator
>>> isinstance((x for x in range(10)), Iterator)
True
>>> isinstance([], Iterator)
False
>>> isinstance({}, Iterator)
False
>>> isinstance('abc', Iterator)
False

生成器都是Iterator对象,但listdictstr虽然是Iterable,却不是Iterator

listdictstrIterable变成Iterator可以使用iter()函数:

>>> isinstance(iter([]), Iterator)
True
>>> isinstance(iter('abc'), Iterator)
True

你可能会问,为什么listdictstr等数据类型不是Iterator

这是因为Python的Iterator对象表示的是一个数据流,Iterator对象可以被next()函数调用并不断返回下一个数据,直到没有数据时抛出StopIteration错误。可以把这个数据流看做是一个有序序列,但我们却不能提前知道序列的长度,只能不断通过next()函数实现按需计算下一个数据,所以Iterator的计算是惰性的,只有在需要返回下一个数据时它才会计算。

Iterator甚至可以表示一个无限大的数据流,例如全体自然数。而使用list是永远不可能存储全体自然数的。

小结

凡是可作用于for循环的对象都是Iterable类型;

凡是可作用于next()函数的对象都是Iterator类型,它们表示一个惰性计算的序列;

集合数据类型如listdictstr等是Iterable但不是Iterator,不过可以通过iter()函数获得一个Iterator对象。

Python的for循环本质上就是通过不断调用next()函数实现的,例如:

for x in [1, 2, 3, 4, 5]:
pass

实际上完全等价于:

# 首先获得Iterator对象:
it = iter([1, 2, 3, 4, 5])
# 循环:
while True:
try:
# 获得下一个值:
x = next(it)
except StopIteration:
# 遇到StopIteration就退出循环
break

Python---9高级特性的更多相关文章

  1. Python的高级特性8:你真的了解类,对象,实例,方法吗

    Python的高级特性1-7系列是本人从Python2过渡3时写下的一些个人见解(不敢说一定对),接下来的系列主要会以类级为主. 类,对象,实例,方法是几个面向对象的几个基本概念,其实我觉得很多人并不 ...

  2. Python的高级特性7:闭包和装饰器

    本节跟第三节关系密切,最好放在一起来看:python的高级特性3:神奇的__call__与返回函数 一.闭包:闭包不好解释,只能先看下面这个例子: In [23]: def outer(part1): ...

  3. python的高级特性:切片,迭代,列表生成式,生成器,迭代器

    python的高级特性:切片,迭代,列表生成式,生成器,迭代器 #演示切片 k="abcdefghijklmnopqrstuvwxyz" #取前5个元素 k[0:5] k[:5] ...

  4. python函数高级特性

    掌握了Python的数据类型.语句.函数,基本可以编写出很多有用的程序了.但是Python中,代码不是越多越好,而是越少越好.代码不是越复杂越好,而是越简单越好.基于这一思想,我们来介绍python中 ...

  5. Python的高级特性(切片,迭代,生成器,迭代器)

    掌握了python的数据类型,语句和函数,基本上就可以编出很多有用的程序了. 但是在python中,并不是代码越多越好,代码不是越复杂越好,而是越简单越好. 基于这个思想,就引申出python的一些高 ...

  6. Learning Python 011 高级特性 2

    Python 高级特性 2 列表生成式 列表生成式就是指类似这样的代码:[x for x in range(1, 11)] >>> L = [x for x in range(1, ...

  7. Learning Python 011 高级特性 1

    Python 高级特性 1 切片 将L = ['Michael', 'Sarah', 'Tracy', 'Bob', 'Jack']列表中前上个3个元素: L = ['Michael', 'Sarah ...

  8. python的高级特性3:神奇的__call__与返回函数

    __call__是一个很神奇的特性,只要某个类型中有__call__方法,,我们可以把这个类型的对象当作函数来使用. 也许说的比较抽象,举个例子就会明白. In [107]: f = abs In [ ...

  9. Python之高级特性

    一.切片 L = ['Michael', 'Sarah', 'Tracy', 'Bob', 'Jack']取出前三个元素 , 笨方法就是通过下标一个一个获取 [L[0], L[1], L[2]]Pyt ...

  10. Python的高级特性12:类的继承

    在面向对象的程序设计中,继承(Inheritance)允许子类从父类那里获得属性和方法,同时子类可以添加或者重载其父类中的任何方法.在C++和Java的对象模型中,子类的构造函数会自动调用父类的构造函 ...

随机推荐

  1. 图论模型--dijstra算法和floyd算法

    matlab代码实现:https://blog.csdn.net/weixin_40108753/article/details/81237585 python代码实现:

  2. dht算法原理描述

    dht原理 dht是P2P网络(结构化P2P)核心路由算法,主要是利用一致性hash,把节点和资源都表示成一个hash值,放入到这个大的hash环中,每个节点负责路由靠近它的资源. 一.重要概念:  ...

  3. 国产手机早就异军突起,为何还是有很多人“迷恋”iPhone?

    近几年,国产手机不论是从外观上还是设计上,以及销量上都比前有了长足的进步,手机的品质和售后也在不断提升.这也让中国手机厂商不断的推出了拥有自己品牌特色的产品.特别是2018年不少国产手机品牌的旗舰级产 ...

  4. Monkey安装与配置教程

    一.JAVA环境的搭建 安装jdk1.8.0_221,完成环境变量的配置 然后再在系统变量中找到Path,添加%JAVA_HOME%\bin;,确定后,按win+r打开运行,输入cmd 在cmd窗口中 ...

  5. oracle中null的理解

    < EXAMNO STUNO WRITTENEXAM LABEXAM e2014070001 s25301 80 58 e2014070002 s25302 50   e2014070003 s ...

  6. git命令简单使用

    git config --global user.name 'sss' git config --global user.email 'huahua@163.com' cd d:/mywork git ...

  7. 如何将EXCEL两列比较后不重复的数据复制到另一列上

    Q1:我有两列数据,需要做重复性比较,比较完后需要将不重复的数据提取出来自成一列,请问该如何操作? 假如你要比较A列与B列数据是否重复,应该有三种结果(即AB皆有,A有B无,B有A无),可在C列存放A ...

  8. 概率DP——BZOJ4008 [HNOI2015]亚瑟王

    [HNOI2015]亚瑟王 Description 小 K 不慎被 LL 邪教洗脑了,洗脑程度深到他甚至想要从亚瑟王邪教中脱坑.他决定,在脱坑之前,最后再来打一盘亚瑟王.既然是最后一战,就一定要打得漂 ...

  9. 系统学习javaweb重点难点1--如何区分<input/>框里的三种常用属性:type属性 name属性 和 value属性

    感想:这是我系统学习javaweb的时候感觉这个是一个初学者十分容易搞混的点 学习笔记: 首先,是type属性. 表单输入项标签之一,用户可以在该标签上通过填写和选择进行数据输入. type属性设置该 ...

  10. python3下scrapy爬虫(第六卷:利用cookie模拟登陆抓取个人中心页面)

    之前我们爬取的都是那些无需登录就要可以使用的网站但是当我们想爬取自己或他人的个人中心时就需要做登录,一般进入登录页面有两种 ,一个是独立页面登陆,另一个是弹窗,我们先不管验证码登陆的问题 ,现在试一下 ...