一、切片

取一个list或tuple的部分元素是非常常见的操作。比如,一个list如下:

  1. >>> L = ['Michael', 'Sarah', 'Tracy', 'Bob', 'Jack']

取前3个元素,应该怎么做?

笨办法:

  1. >>> [L[0], L[1], L[2]]
  2. ['Michael', 'Sarah', 'Tracy']

之所以是笨办法是因为扩展一下,取前N个元素就没辙了。

取前N个元素,也就是索引为0-(N-1)的元素,可以用循环:

  1. >>> r = []
  2. >>> n = 3
  3. >>> for i in range(n):
  4. ... r.append(L[i])
  5. >>> r
  6. ['Michael', 'Sarah', 'Tracy']

对这种经常取指定索引范围的操作,用循环十分繁琐,因此,Python提供了切片(Slice)操作符,L[0:3],能大大简化这种操作。

对应上面的问题,取前3个元素,用一行代码就可以完成切片:

  1. >>> L[0:3]
  2. ['Michael', 'Sarah', 'Tracy']

L[0:3]表示,从索引0开始取,直到索引3为止,但不包括索引3。即索引012,正好是3个元素。

如果第一个索引是0,还可以省略:

  1. >>> L[:3]
  2. ['Michael', 'Sarah', 'Tracy']

也可以从索引1开始,取出2个元素出来:

  1. >>> L[1:3]
  2. ['Sarah', 'Tracy']

类似的,既然Python支持L[-1]取倒数第一个元素,那么它同样支持倒数切片,

当第一个元素是负数时,此时的第二个元素最大为0,不能是正数。

  1. >>> L[-2:]
  2. ['Bob', 'Jack']
  3. >>> L[-2:-1]
  4. ['Bob']
  5. >>> L[-2:1]
  6. [ ]
  7. >>> L[1:-1]
  8. [ 'Sarah', 'Tracy', 'Bob']

记住倒数第一个元素的索引是-1

切片操作十分有用。我们先创建一个0-99的数列:

  1. >>> L = list(range(100))
  2. >>> L
  3. [0, 1, 2, 3, ..., 99]

可以通过切片轻松取出某一段数列。比如前10个数:

  1. >>> L[:10]
  2. [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

后10个数:

  1. >>> L[-10:]
  2. [90, 91, 92, 93, 94, 95, 96, 97, 98, 99]

前11-20个数:

  1. >>> L[10:20]
  2. [10, 11, 12, 13, 14, 15, 16, 17, 18, 19]

前10个数,每两个取一个:

  1. >>> L[:10:2]
  2. [0, 2, 4, 6, 8]

所有数,每5个取一个:

  1. >>> L[::5]
  2. [0, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95]

甚至什么都不写,只写[:]就可以原样复制一个list:

  1. >>> L[:]
  2. [0, 1, 2, 3, ..., 99]

tuple也是一种list,唯一区别是tuple不可变。因此,tuple也可以用切片操作,只是操作的结果仍是tuple:

  1. >>> (0, 1, 2, 3, 4, 5)[:3]
  2. (0, 1, 2)

字符串'xxx'也可以看成是一种list,每个元素就是一个字符。因此,字符串也可以用切片操作,只是操作结果仍是字符串:

  1. >>> 'ABCDEFG'[:3]
  2. 'ABC'
  3. >>> 'ABCDEFG'[::2]
  4. 'ACEG'

在很多编程语言中,针对字符串提供了很多各种截取函数(例如,substring),其实目的就是对字符串切片。Python没有针对字符串的截取函数,只需要切片一个操作就可以完成,非常简单。

二、迭代

如果给定一个list或tuple,我们可以通过for循环来遍历这个list或tuple,这种遍历我们称为迭代(Iteration)。

在Python中,迭代是通过for ... in来完成的,而很多语言比如C语言,迭代list是通过下标完成的,比如Java代码:

  1. for (i=0; i<list.length; i++) {
  2. n = list[i];
  3. }

可以看出,Python的for循环抽象程度要高于C的for循环,因为Python的for循环不仅可以用在list或tuple上,还可以作用在其他可迭代对象上。

list这种数据类型虽然有下标,但很多其他数据类型是没有下标的,但是,只要是可迭代对象,无论有无下标,都可以迭代,比如dict就可以迭代:

  1. >>> d = {'a': 1, 'b': 2, 'c': 3}
  2. >>> for v in d.values():
  3. ... print(v)
  4. ...
  5. a
  6. c
  7. b

因为dict的存储不是按照list的方式顺序排列,所以,迭代出的结果顺序很可能不一样。

默认情况下,dict迭代的是key。

如果要迭代value,可以用for value in d.values()

如果要同时迭代key和value,可以用for k, v in d.items()

  1. >>>d = {'a': 1, 'b': 2, 'c': 3}
  1. >>>for value in d.items():
  2. ... print(value)
  3. ...
  4. ('a', 1)
  5. ('b', 2)
  6. ('c', 3)

由于字符串也是可迭代对象,因此,也可以作用于for循环:

  1. >>> for ch in 'ABC':
  2. ... print(ch)
  3. ...
  4. A
  5. B
  6. C

所以,当我们使用for循环时,只要作用于一个可迭代对象,for循环就可以正常运行,而我们不太关心该对象究竟是list还是其他数据类型。

那么,如何判断一个对象是可迭代对象呢?方法是通过collections模块的Iterable类型判断:

  1. >>> from collections import Iterable
  2. >>> isinstance('abc', Iterable) # str是否可迭代
  3. True
  4. >>> isinstance([1,2,3], Iterable) # list是否可迭代
  5. True
  6. >>> isinstance(123, Iterable) # 整数是否可迭代
  7. False

最后一个小问题,如果要对list实现类似Java那样的下标循环怎么办?

Python内置的enumerate函数可以把一个list变成索引-元素对,这样就可以在for循环中同时迭代索引和元素本身:

  1. >>> for i, value in enumerate(['A', 'B', 'C']):
  2. ... print(i, value)
  3. ...
  4. 0 A
  5. 1 B
  6. 2 C

上面的for循环里,同时引用了两个变量,在Python里是很常见的,比如下面的代码:

  1. >>> for x, y in [(1, 1), (2, 4), (3, 9)]:
  2. ... print(x, y)
  3. ...
  4. 1 1
  5. 2 4
  6. 3 9

三、列表生成式

列表生成式即List Comprehensions,是Python内置的非常简单却强大的可以用来创建list的生成式。

举个例子,要生成list [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]可以用list(range(1, 11)),不包含第二个元素

  1. >>> list(range(1, 11))
  2. [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
  3.  
  4. >>>a=list(range(11))
  5. [0,1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

但如果要生成[1x1, 2x2, 3x3, ..., 10x10]怎么做?方法一是循环:

  1. >>> L = []
  2. >>> for x in range(1, 11):
  3. ... L.append(x * x)
  4. ...
  5. >>> L
  6. [1, 4, 9, 16, 25, 36, 49, 64, 81, 100]

但是循环太繁琐,而列表生成式则可以用一行语句代替循环生成上面的list:

  1. >>> [x * x for x in range(1, 11)]
  2. [1, 4, 9, 16, 25, 36, 49, 64, 81, 100]

写列表生成式时,把要生成的元素x * x放到前面,后面跟for循环,就可以把list创建出来,十分有用,多写几次,很快就可以熟悉这种语法。

for循环后面还可以加上if判断,这样我们就可以筛选出仅偶数的平方:

  1. >>> [x * x for x in range(1, 11) if x % 2 == 0]
  2. [4, 16, 36, 64, 100]

还可以使用两层循环,可以生成全排列:

  1. >>> [m + n for m in 'ABC' for n in 'XYZ']
  2. ['AX', 'AY', 'AZ', 'BX', 'BY', 'BZ', 'CX', 'CY', 'CZ']

三层和三层以上的循环就很少用到了。

运用列表生成式,可以写出非常简洁的代码。例如,列出当前目录下的所有文件和目录名:os.listdir('.'),可以通过一行代码实现:

  1. >>> import os # 导入os模块,模块的概念后面讲到
  2. >>> [d for d in os.listdir('.')] # os.listdir可以列出文件和目录
  3. ['.emacs.d', '.ssh', '.Trash', 'Adlm', 'Applications', 'Desktop', 'Documents', 'Downloads', 'Library', 'Movies', 'Music', 'Pictures', 'Public', 'VirtualBox VMs', 'Workspace', 'XCode']
  1.  

for循环其实可以同时使用两个甚至多个变量,比如dictitems()可以同时迭代key和value:

  1. >>> d = {'x': 'A', 'y': 'B', 'z': 'C' }
  2. >>> for k, v in d.items():
  3. ... print(k, '=', v)
  4. ...
  5. x = A
  6. y = B
  7. z = C

因此,列表生成式也可以使用两个变量来生成list:

  1. >>> d = {'x': 'A', 'y': 'B', 'z': 'C' }
  2. >>> p1=[k+v for k,v in d.items()]
  3. >>> p=[k+'='+v for k,v in d.items()]
  4. >>> print(p1,p)
  5.  
  6. ['xA', 'yB', 'zC'] ['x=A', 'y=B', 'z=C']

最后把一个list中所有的字符串变成小写:

  1. >>> L = ['Hello', 'World', 'ROSE', 'MARy']
  2. >>> [s.lower() for s in L]
  3. ['hello', 'world', 'rose', 'mary']

四、生成器

通过列表生成式,我们可以直接创建一个列表。但是,受到内存限制,列表容量肯定是有限的。而且,创建一个包含100万个元素的列表,不仅占用很大的存储空间,如果我们仅仅需要访问前面几个元素,那后面绝大多数元素占用的空间都白白浪费了。

所以,如果列表元素可以按照某种算法推算出来,那我们是否可以在循环的过程中不断推算出后续的元素呢?这样就不必创建完整的list,从而节省大量的空间。在Python中,这种一边循环一边计算的机制,称为生成器:generator。

要创建一个generator,有很多种方法。

1)第一种方法很简单,只要把一个列表生成式的[]改成(),就创建了一个generator:

  1. >>> L = [x * x for x in range(10)]
  2. >>> L
  3. [0, 1, 4, 9, 16, 25, 36, 49, 64, 81]
  4. >>> g = (x * x for x in range(10))
  5. >>> g
  6. <generator object <genexpr> at 0x1022ef630>

创建Lg的区别仅在于最外层的[]()L是一个list,而g是一个generator。

我们可以直接打印出list的每一个元素,但我们怎么打印出generator的每一个元素呢?

如果要一个一个打印出来,可以通过next()函数获得generator的下一个返回值:

  1. >>> next(g)
  2. 0
  3. >>> next(g)
  4. 1
  5. >>> next(g)
  6. 4
  7. >>> next(g)
  8. 9
  9. >>> next(g)
  10. 16
  11. >>> next(g)
  12. 25
  13. >>> next(g)
  14. 36
  15. >>> next(g)
  16. 49
  17. >>> next(g)
  18. 64
  19. >>> next(g)
  20. 81
  21. >>> next(g)
  22. Traceback (most recent call last):
  23. File "<stdin>", line 1, in <module>
  24. StopIteration

我们讲过,generator保存的是算法,每次调用next(g),就计算出g的下一个元素的值,直到计算到最后一个元素,没有更多的元素时,抛出StopIteration的错误。

当然,上面这种不断调用next(g)实在是太变态了,正确的方法是使用for循环,因为generator也是可迭代对象:

  1. >>> g = (x * x for x in range(10))
  2. >>> for n in g:
  3. ... print(n)
  4. ...
  5. 0
  6. 1
  7. 4
  8. 9
  9. 16
  10. 25
  11. 36
  12. 49
  13. 64
  14. 81

所以,我们创建了一个generator后,基本上永远不会调用next(),而是通过for循环来迭代它,并且不需要关心StopIteration的错误。

generator非常强大。如果推算的算法比较复杂,用类似列表生成式的for循环无法实现的时候,还可以用函数来实现。

比如,著名的斐波拉契数列(Fibonacci),除第一个和第二个数外,任意一个数都可由前两个数相加得到:

1, 1, 2, 3, 5, 8, 13, 21, 34, ...

斐波拉契数列用列表生成式写不出来,但是,用函数把它打印出来却很容易:

  1. def fib(max):
  2. n, a, b = 0, 0, 1
  3. while n < max:
  4. print(b)
  5. a, b = b, a + b
  6. n = n + 1
  7. return 'done'

注意,赋值语句:

  1. a, b = b, a + b

相当于:

  1. t = (b, a + b) # t是一个tuple
  2. a = t[0]
  3. b = t[1]

但不必显式写出临时变量t就可以赋值。

上面的函数可以输出斐波那契数列的前N个数:

  1. >>> fib(6)
  2. 1
  3. 1
  4. 2
  5. 3
  6. 5
  7. 8
  8. 'done'

仔细观察,可以看出,fib函数实际上是定义了斐波拉契数列的推算规则,可以从第一个元素开始,推算出后续任意的元素,这种逻辑其实非常类似generator。

也就是说,上面的函数和generator仅一步之遥。要把fib函数变成generator,只需要把print(b)改为yield b就可以了:

  1. def fib(max):
  2. n, a, b = 0, 0, 1
  3. while n < max:
  4. yield b
  5. a, b = b, a + b
  6. n = n + 1
  7. return 'done'

这就是定义generator的另一种方法。

2)如果一个函数定义中包含yield关键字,那么这个函数就不再是一个普通函数,而是一个generator:

  1. >>> f = fib(6)
  2. 1
  3. 1
  4. 2
  5. 3
  6. 5
  7. 8
  8. <generator object fib at 0x104feaaa0>

这里,最难理解的就是generator和函数的执行流程不一样。函数是顺序执行,遇到return语句或者最后一行函数语句就返回。而变成generator的函数,在每次调用next()的时候执行,遇到yield语句返回,再次执行时从上次返回的yield语句处继续执行。

举个简单的例子,定义一个generator,依次返回数字1,3,5:

  1. def odd():
  2. print('step 1')
  3. yield 1
  4. print('step 2')
  5. yield(3)
  6. print('step 3')
  7. yield(5)

调用该generator时,首先要生成一个generator对象,然后用next()函数不断获得下一个返回值:

  1. >>> o = odd()
  2. >>> next(o)
  3. step 1
  4. 1
  5. >>> next(o)
  6. step 2
  7. 3
  8. >>> next(o)
  9. step 3
  10. 5
  11. >>> next(o)
  12. Traceback (most recent call last):
  13. File "<stdin>", line 1, in <module>
  14. StopIteration

可以看到,odd不是普通函数,而是generator,在执行过程中,遇到yield就中断,下次又继续执行。执行3次yield后,已经没有yield可以执行了,所以,第4次调用next(o)就报错。

回到fib的例子,我们在循环过程中不断调用yield,就会不断中断。当然要给循环设置一个条件来退出循环,不然就会产生一个无限数列出来。

同样的,把函数改成generator后,我们基本上从来不会用next()来获取下一个返回值,而是直接使用for循环来迭代:

同样的,把函数改成generator后,我们基本上从来不会用next()来获取下一个返回值,而是直接使用for循环来迭代:

  1. >>> for n in fib(6):
  2. ... print(n)
  3. ...
  4. 1
  5. 1
  6. 2
  7. 3
  8. 5
  9. 8

但是用for循环调用generator时,发现拿不到generator的return语句的返回值。如果想要拿到返回值,必须捕获StopIteration错误,返回值包含在StopIterationvalue中:

  1. >>> g = fib(6)
  2. >>> while True:
  3. ... try:
  4. ... x = next(g)
  5. ... print('g:', x)
  6. ... except StopIteration as e:
  7. ... print('Generator return value:', e.value)
  8. ... break
  9. ...
  10. g: 1
  11. g: 1
  12. g: 2
  13. g: 3
  14. g: 5
  15. g: 8
  16. Generator return value: done

输入:  

输出:

五、迭代器

我们已经知道,可以直接作用于for循环的数据类型有以下几种:

一类是集合数据类型,如listtupledictsetstr等;

一类是generator,包括生成器和带yield的generator function。

这些可以直接作用于for循环的对象统称为可迭代对象:Iterable

可以使用isinstance()判断一个对象是否是Iterable对象:

  1. >>> from collections import Iterable
  2. >>> isinstance([], Iterable)
  3. True
  4. >>> isinstance({}, Iterable)
  5. True
  6. >>> isinstance('abc', Iterable)
  7. True
  8. >>> isinstance((x for x in range(10)), Iterable)
  9. True
  10. >>> isinstance(100, Iterable)
  11. False

而生成器不但可以作用于for循环,还可以被next()函数不断调用并返回下一个值,直到最后抛出StopIteration错误表示无法继续返回下一个值了。

可以被next()函数调用并不断返回下一个值的对象称为迭代器:Iterator

可以使用isinstance()判断一个对象是否是Iterator对象:

  1. >>> from collections import Iterator
  2. >>> isinstance((x for x in range(10)), Iterator)
  3. True
  4. >>> isinstance([], Iterator)
  5. False
  6. >>> isinstance({}, Iterator)
  7. False
  8. >>> isinstance('abc', Iterator)
  9. False

生成器都是Iterator对象,但listdictstr虽然是Iterable,却不是Iterator

listdictstrIterable变成Iterator可以使用iter()函数:

  1. >>> isinstance(iter([]), Iterator)
  2. True
  3. >>> isinstance(iter('abc'), Iterator)
  4. True

你可能会问,为什么listdictstr等数据类型不是Iterator

这是因为Python的Iterator对象表示的是一个数据流,Iterator对象可以被next()函数调用并不断返回下一个数据,直到没有数据时抛出StopIteration错误。可以把这个数据流看做是一个有序序列,但我们却不能提前知道序列的长度,只能不断通过next()函数实现按需计算下一个数据,所以Iterator的计算是惰性的,只有在需要返回下一个数据时它才会计算。

Iterator甚至可以表示一个无限大的数据流,例如全体自然数。而使用list是永远不可能存储全体自然数的。

小结

凡是可作用于for循环的对象都是Iterable类型;

凡是可作用于next()函数的对象都是Iterator类型,它们表示一个惰性计算的序列;

集合数据类型如listdictstr等是Iterable但不是Iterator,不过可以通过iter()函数获得一个Iterator对象。

Python的for循环本质上就是通过不断调用next()函数实现的,例如:

  1. for x in [1, 2, 3, 4, 5]:
  2. pass

实际上完全等价于:

  1. # 首先获得Iterator对象:
  2. it = iter([1, 2, 3, 4, 5])
  3. # 循环:
  4. while True:
  5. try:
  6. # 获得下一个值:
  7. x = next(it)
  8. except StopIteration:
  9. # 遇到StopIteration就退出循环
  10. break

Python---9高级特性的更多相关文章

  1. Python的高级特性8:你真的了解类,对象,实例,方法吗

    Python的高级特性1-7系列是本人从Python2过渡3时写下的一些个人见解(不敢说一定对),接下来的系列主要会以类级为主. 类,对象,实例,方法是几个面向对象的几个基本概念,其实我觉得很多人并不 ...

  2. Python的高级特性7:闭包和装饰器

    本节跟第三节关系密切,最好放在一起来看:python的高级特性3:神奇的__call__与返回函数 一.闭包:闭包不好解释,只能先看下面这个例子: In [23]: def outer(part1): ...

  3. python的高级特性:切片,迭代,列表生成式,生成器,迭代器

    python的高级特性:切片,迭代,列表生成式,生成器,迭代器 #演示切片 k="abcdefghijklmnopqrstuvwxyz" #取前5个元素 k[0:5] k[:5] ...

  4. python函数高级特性

    掌握了Python的数据类型.语句.函数,基本可以编写出很多有用的程序了.但是Python中,代码不是越多越好,而是越少越好.代码不是越复杂越好,而是越简单越好.基于这一思想,我们来介绍python中 ...

  5. Python的高级特性(切片,迭代,生成器,迭代器)

    掌握了python的数据类型,语句和函数,基本上就可以编出很多有用的程序了. 但是在python中,并不是代码越多越好,代码不是越复杂越好,而是越简单越好. 基于这个思想,就引申出python的一些高 ...

  6. Learning Python 011 高级特性 2

    Python 高级特性 2 列表生成式 列表生成式就是指类似这样的代码:[x for x in range(1, 11)] >>> L = [x for x in range(1, ...

  7. Learning Python 011 高级特性 1

    Python 高级特性 1 切片 将L = ['Michael', 'Sarah', 'Tracy', 'Bob', 'Jack']列表中前上个3个元素: L = ['Michael', 'Sarah ...

  8. python的高级特性3:神奇的__call__与返回函数

    __call__是一个很神奇的特性,只要某个类型中有__call__方法,,我们可以把这个类型的对象当作函数来使用. 也许说的比较抽象,举个例子就会明白. In [107]: f = abs In [ ...

  9. Python之高级特性

    一.切片 L = ['Michael', 'Sarah', 'Tracy', 'Bob', 'Jack']取出前三个元素 , 笨方法就是通过下标一个一个获取 [L[0], L[1], L[2]]Pyt ...

  10. Python的高级特性12:类的继承

    在面向对象的程序设计中,继承(Inheritance)允许子类从父类那里获得属性和方法,同时子类可以添加或者重载其父类中的任何方法.在C++和Java的对象模型中,子类的构造函数会自动调用父类的构造函 ...

随机推荐

  1. Go-语言基础-变量-类型-函数

    第一个程序 //单行注释 /* 多行注释 */ package main // 表示当前go文件属于main包 import "fmt" // 导入包 //编译型语言需要有一个入口 ...

  2. python基础,if判断

    一.计算机基础知识: 1.计算机基本组成:主板+CPU+内存 (CPU:主频,核数(16)   内存:大小,型号,主频   显卡:显存,位宽) 2.计算机最低层:电子电路,只能识别0和1. 二.pyt ...

  3. Linux系统如何记录时间

    1.内核在开机启动的时候会读取RTC硬件获取一个时间作为初始基准时间,这个基准时间对应一个jiiffies值(这个基准时间换算成jiffies值的方法是:用这个时间减去1970-01-01  00:0 ...

  4. BZOJ4059[Cerc2012]Non-boring sequences(扫描线/分治)

    这题正解应该是扫描线,就是发现DP的区间在两个维度都为连续段,于是可以直接扫描线.但不幸的是,扫描线常数过大,无法通过本题. 考虑分治.对于分治区间[l,r],可以记录pre和nxt表示其前/后一次出 ...

  5. iOS 直接使用16进制颜色

    在做iOS开发时,一般我们会吸色,就是产品给的图我们一般会吸色,但是最近吸色时候,老大说有较大的颜色偏差,所以要求我们直接使用UI给出的额16进制颜色,你也可以搜索<RGB颜色值转换成十六进制颜 ...

  6. CodeForces 992B Nastya Studies Informatics + Hankson的趣味题(gcd、lcm)

    http://codeforces.com/problemset/problem/992/B  题意: 给你区间[l,r]和x,y 问你区间中有多少个数对 (a,b) 使得 gcd(a,b)=x lc ...

  7. Android如何制作自己的依赖库上传至github供别人下载使用

    Android如何制作自己的依赖库上传至github供别人下载使用 https://blog.csdn.net/xuchao_blog/article/details/62893851

  8. Caffe Ubuntu14.04 + CUDA 8 (支持GTX1080 1070等Pascal架构显卡)

    1. 前言 本教程使用的系统是Ubuntu 14.04 LTS 64-bit,使用的CUDA版本为8. 理论上本教程支持Pascal架构显卡,如游戏卡GeForce GTX1070,GTX 1080, ...

  9. 微服务监控druid sql

    参考该文档 保存druid的监控记录 把日志保存的关系数据数据库(mysql,oracle等) 或者nosql数据库(redis,芒果db等) 保存的时候可以增加微服务名称标识好知道是哪个微服务的sq ...

  10. hashlib python 加密框架

    python3中digest()和hexdigest()区别 转自:https://www.cnblogs.com/yrxns/p/7727471.html hashlib是涉及安全散列和消息摘要,提 ...