由0和1组成的串中,不能表示为由几个相同的较小的串连接成的串,称为本原串,有多少个长为n(n<=100000000)的本原串?

答案mod2008.

例如,100100不是本原串,因为他是由两个100组成,而1101是本原串。

Input

输入包括多个数据,每个数据一行,包括一个整数n,代表串的长度。

Output

对于每个测试数据,输出一行,代表有多少个符合要求本原串,答案mod2008.

Sample Input

1

2

3

4

Sample Output

2

2

6

12

解析:

考虑所有串减去非本原串。

长度为N的串最多组成 2N2^N2N种情况的串,当串全部为1或为0的时候不是本原串。

再举个例子,6的时候 6可以由三个长度为2的串组成,也可以由长度为3的两个穿组成,那么长度为2的组成方式其实是有四种00 01 10 11因为00 11组成的是全为1的或者,全为0的之前考虑过,所以不重复计算。在考虑长度为3的串,000 001 010 011 100 101 110 111 除了000 111之外还有六种,我们发现恰好为,其本原串的数量。

因此此题公式为:

2N−cal[i]其中i为因子,cal()为长度为i的本原串的数量2^N-cal[i] 其中i为因子,cal()为长度为i的本原串的数量2N−cal[i]其中i为因子,cal()为长度为i的本原串的数量

故可写出代码:

#include <cstring>
#include <iostream>
#include <cstdio>
#include <algorithm>
#include <map>
using namespace std;
int m[10000000];
long long n,ans;
long long mod_pow(long long x,long long n,int mod)
{
long long res=1;
while(n)
{
if(n&1)
res=res*x%mod;
x=x*x%mod;
n>>=1;
}
return res;
}
int cal(long long n)
{
if(m[n]!=0)
return m[n];
m[n]=mod_pow(2,n,2008)-2;
for(int i=2;i*i<=n;i++)
{
if(n%i==0)
{
m[n]=(m[n]-cal(i)+2008)%2008;
if(i*i!=n)
m[n]=(m[n]-cal(n/i)+2008)%2008; }
}
return m[n];
}
int main()
{
m[0]=0;
m[1]=2;
m[2]=2;
while(scanf("%d",&n)!=EOF)
{
if(n<=2)
printf("%d\n",m[n]);
else
{
m[n]=cal(n);
printf("%d\n",m[n]);
}
}
}

数学--数论--HDU 2197 本原串 (推规律)的更多相关文章

  1. hdu 2197 本原串

    http://acm.hdu.edu.cn/showproblem.php?pid=2197 长度为n的01串有2的n次方个,再减去不符合要求的.不符合要求的字符串就是长度为n的约数的字符串. 递归处 ...

  2. 数学--数论--HDU - 6322 打表找规律

    In number theory, Euler's totient function φ(n) counts the positive integers up to a given integer n ...

  3. 数学--数论--HDU - 6124 Euler theorem (打表找规律)

    HazelFan is given two positive integers a,b, and he wants to calculate amodb. But now he forgets the ...

  4. 数学--数论--HDU 2582 F(N) 暴力打表找规律

    This time I need you to calculate the f(n) . (3<=n<=1000000) f(n)= Gcd(3)+Gcd(4)+-+Gcd(i)+-+Gc ...

  5. 数学--数论--HDU 1792 A New Change Problem (GCD+打表找规律)

    Problem Description Now given two kinds of coins A and B,which satisfy that GCD(A,B)=1.Here you can ...

  6. 数学--数论--HDU - 6395 Let us define a sequence as below 分段矩阵快速幂

    Your job is simple, for each task, you should output Fn module 109+7. Input The first line has only ...

  7. 数学--数论--Hdu 5793 A Boring Question (打表+逆元)

    There are an equation. ∑0≤k1,k2,⋯km≤n∏1⩽j<m(kj+1kj)%1000000007=? We define that (kj+1kj)=kj+1!kj! ...

  8. HDU 2197 本源串

    如果一个串能完全由其子串组成,那么这个串就不是本源串 求长度为n的本源串的个数. 由定义一个串如果不是本源串,那么他的长度一定是组成其子本源串的长度的(>=1) 整数倍. 那么长度为n的串总个数 ...

  9. 数学--数论--HDU 6063 RXD and math (跟莫比乌斯没有半毛钱关系的打表)

    RXD is a good mathematician. One day he wants to calculate: output the answer module 109+7. p1,p2,p3 ...

随机推荐

  1. MTK Android 设置下添加一级菜单[ZedielPcbTest]

    功能描述:Android7.1.2 设置下添加一级菜单[ZedielPcbTest],点击ZedielPcbTest,启动ZedielPcbTest.apk应用. 编译:需要在out目录删除Settt ...

  2. MTK Android MCC(移动国家码)和 MNC(移动网络码)

    国际移动用户识别码(IMSI) international mobile subscriber identity 国际上为唯一识别一个移动用户所分配的号码. 从技术上讲,IMSI可以彻底解决国际漫游问 ...

  3. 2017蓝桥杯贪吃蛇(C++C组)

    原题: 贪吃蛇长度+-------------------------------------------------+|                                        ...

  4. Golang Web入门(1):自顶向下理解Http服务器

    摘要 由于Golang优秀的并发处理,很多公司使用Golang编写微服务.对于Golang来说,只需要短短几行代码就可以实现一个简单的Http服务器.加上Golang的协程,这个服务器可以拥有极高的性 ...

  5. 浏览器判断兼容IE

    很多时候IE浏览器的兼容性问题总是让人很头疼,或许是样式的或许是脚本的.总之因为IE的低版本问题会引发各种各样的问题出来. function isUnderIE10() {//IE 6,7,8,9 i ...

  6. String 对象-->lastIndexOf() 方法

    1.定义和用法 lastIndexOf() 方法可返回一个指定的字符串值最后出现的位置,如果指定第二个参数 start,则在一个字符串中的指定位置从后向前搜索. 语法: string.lastInde ...

  7. iOS技能 - 最新美团、百度、腾讯、头条、阿里 面试题目记录

    关于面试题,可能没那么多时间来总结答案,有什么需要讨论的地方欢迎大家指教.主要记录一下准备过程,和面试的一些总结,希望能帮助到正在面试或者将要面试的同学吧. 美团 一面 1.简历上写的项目问了一遍,然 ...

  8. 负载均衡服务之HAProxy基础入门

    首先我们来了解下haproxy是干嘛的?haproxy是一个法国人名叫Willy Tarreau开发的一个开源软件:这款软件主要用于解决客户端10000以上的同时连接的高性能的TCP和HTTP负载均衡 ...

  9. JS 中的自定义事件和模拟事件

    在 JS 中模拟事件指的是模拟 JS 中定义的一些事件,例如点击事件,键盘事件等. 自定义事件指的是创建一个自定义的,JS 中之前没有的事件. 接下来分别说一下创建这两种事件的方法. 创建自定义事件 ...

  10. shiro:集成Spring(四)

    基于[加密及密码比对器(三)]项目改造 引入相关依赖环境 shiro-spring已经包含 shiro-core和shiro-web 所以这两个依赖可以删掉 <!--shiro继承spring依 ...