统计分析_集中趋势and离散程度
1.数组的集中趋势-如何定义数组的中心
1.1 常用几下几个指标来描述一个数组的集中趋势
均值-算术平均数
。
中位数-将数组升序或降序排列后,位于中间的数。
众数-数组中出现最多的数。
1.2 指标特点
优点 | 缺点 | |
均值 | 充分利用所有数据,包含最多信息量,适用性强,应用最为广泛 | 极易受到异常值的影响,产生数据倾斜 |
中位数 | 避免异常值的影响 | 不敏感 |
众数 | 能够很好反应数组的集中趋势 | 当数组没有明显的集中趋势时,基本没有信息量 |
1.3 均值使用场景
场景:双11过后,淘宝店需要选择一个指标代表十一月的销售情况,应该如何选择呢?日均销售额是否适合?
回答:如果需要对外公布业绩或是向供应商结算的时候,日均销售额可用,因为这是十一月的真实数据。但如果需要依赖十一月销售额推断十二月销售额时或是判断十一月销售能力对比十月是否有提升时 ,十一月日均销售额不可用,因为双十一销售额的猛涨强依赖于外部环境变换,这种情况下双十一销售额为异常值,不可能在十二月复现,这种情况下十一月日销售额中位数优于日均销售额。
总结:在判断3个代表集中趋势的判断指标使用场景时,应该优先判断均值是否可用。当统计样本中存在极大值或极小值,且极值在我们需要处理的场景中不会复现,这种情况下均值不可用。
1.4 EXCEL和Python语言中的实现
EXCEL
均值:average(数组); 中位数:median(数组),quantile(数组,[quart]),0-最小值,1-下四分位数,2-中位数,3-上四分位数,4-最大值; 众数:mode(数组)
Python
import numpy as np from scipy import stats 均值:np.mean(数组) 中位数:np.median(数组) 众数:stats.mode(数组)[0][0]
2.数组的离散程度-数据的稳定程度
仅适用集中趋势无法提供充足的信息,结合集中趋势和离散程度才能更好的理解数据。
2.1 常用以下四个指标描述数组的离散程度
极差:最大值-最小值(上界-下界),代表数据的宽度,是度量数组离散程度最简单的指标。
局限性:仅是度量数组宽度,难以得出数据的真实分布形态,容易受异常值的影响。
四分位距:上四分位数-下四分位数,仅适用数据中央50%的数据,剔除异常值的影响。
方差:数值与均值的距离的平方数的平均值,一般情况下会用样本方差来估计总体方差。
总体方差为:
样本方差为:
标准差:方差的平方根,度量数据与均值的距离。
拓展:标准分=距离均值的标准差个数,可以对不同数据集的数据进行比较,而这些不同数据集的均值和标准差各不相同,标准分将几个数据集转换成z分布,这个分布均值为0,标准差为1。
2.2 EXCEL和Python语言中的实现
EXCEL
极差:Max(数组)-Min(数组) 四分位距:quantile(数组,3) - quantile(数组,1) 方差:Var(数组) 标准差:Stdev(数组)
Python
import numpy as np
from scipy import stats
import pandas as pd #离散趋势相关指标
print("极差:",np.max(df)-np.min(df))
print("四分位差:",np.percentile(df,75)-np.percentile(df,25))
print("标准差:",np.std(df))
print("方差:",np.var(df))
2.3 小结
离散程度标志着数组的稳定性高低,两个数组对比时,综合比较均值和标准差/方差,可以更好的理解数据。
2020-04-15 17:07
统计分析_集中趋势and离散程度的更多相关文章
- 我的Python分析成长之路9
pandas入门 统计分析是数据分析的重要组成部分,它几乎贯穿整个数据分析的流程.运用统计方法,将定量与定性结合,进行的研究活动叫做统计分析.而pandas是统计分析的重要库. 1.pandas数据结 ...
- SPSS数据分析—描述性统计分析
描述性统计分析是针对数据本身而言,用统计学指标描述其特征的分析方法,这种描述看似简单,实际上却是很多高级分析的基础工作,很多高级分析方法对于数据都有一定的假设和适用条件,这些都可以通过描述性统计分析加 ...
- python数据统计分析
1. 常用函数库 scipy包中的stats模块和statsmodels包是python常用的数据分析工具,scipy.stats以前有一个models子模块,后来被移除了.这个模块被重写并成为了 ...
- 『科学计算_理论』PCA主成分分析
数据降维 为了说明什么是数据的主成分,先从数据降维说起.数据降维是怎么回事儿?假设三维空间中有一系列点,这些点分布在一个过原点的斜面上,如果你用自然坐标系x,y,z这三个轴来表示这组数据的话,需要使用 ...
- 主成分分析(PCA)原理详解_转载
一.PCA简介 1. 相关背景 在许多领域的研究与应用中,往往需要对反映事物的多个变量进行大量的观测,收集大量数据以便进行分析寻找规律.多变量大样本无疑会为研究和应用提供了丰富的信息,但也在一定程度上 ...
- Logical read, Physical read (SET STATISTICS IO)
在查询性能优化时,Logical Read非常重要,它的计数一般与查询出来的结果集数量成正比,与数据读取的速度也成正比. 1,SET STATISTICS IO 显式Disk IO的信息 Syntax ...
- \(\S1\) 描述性统计
在认识客观世界的过程中,统计学的思想和方法经常起着不可替代的作用.在许多工程及自然科学的专业领域中,包括可靠性分析.质量控制.生物信息.脑科学.心理分析.经济分析.金融风险管理.社会科学推断.行为科学 ...
- Oracle分析函数——函数列表
--------------聚合函数 SUM :该函数计算组中表达式的累积和 MIN :在一个组中的数据窗口中查找表达式的最小值 MAX :在一个组中的数据窗口中查找表达式的最大值 AVG :用于计算 ...
- Oracle所有分析函数<转>
Oracle分析函数——函数列表 SUM :该函数计算组中表达式的累积和 MIN :在一个组中的数据窗口中查找表达式的最小值 MAX :在一个组中的数据窗口中 ...
随机推荐
- 爬虫前奏——初谈Requests库
什么是Requests Requests是用python语言基于urllib编写的,采用的是Apache2 Licensed开源协议的HTTP库如果你看过上篇文章关于urllib库的使用,你会发现,其 ...
- 使用EPX Studio 7.0 下载网站验证码
implementation var Document_: DispHTMLDocument; //用于处理网页文档对象 EPX: IExcelPanelXDisp; procedure TForm1 ...
- git常用命令学习配详细说明
原文链接 把当前目录变成Git可以管理的仓库 git init 查看仓库当前的状态 git status 添加新/变动文件 git add <文件名> // 添加某个新文件(目录) git ...
- JavaScript 模式》读书笔记(4)— 函数1
从这篇开始,我们会用很长的章节来讨论函数,这个JavaScript中最重要,也是最基本的技能.本章中,我们会区分函数表达式与函数声明,并且还会学习到局部作用域和变量声明提升的工作原理.以及大量对API ...
- Chromium EC框架探索 1.1 开发环境搭建
1.1 开发环境搭建 本节参考官方文档getting started building ec images quickly编写本节介绍搭建ec开发环境的两种方式,后一种对于绝大多数人而言是不必要的. ...
- 牛客网剑指offer【Python实现】——part1
斐波那契数列 大家都知道斐波那契数列,现在要求输入一个整数n,请你输出斐波那契数列的第n项(从0开始,第0项为0,n<=39). 循环实现,时间复杂度n def Fibonacci(self, ...
- logstash设置从文件读取的重要参数说明及如何强置重新读取
问题描述: 如果运行logstash时从文件读取数据时,就会遇到一个问题,如果读取的目标文件未经修改,而仅修改了conf文件,则即使重新运行logstash,或是执行时使用-r时输出也无法更新. 解决 ...
- 国内外主要的PHP开源CMS系统分析
国内PHP开源CMS内容管理系统从程序框架,模版加载到程序功能上都有很大的进步,大部分都采用了自定义模块,自定义模型的方式,同时提供各个CMS都提供不同的特色功能,CMS内容管理系统一直影响着互联网的 ...
- 为什么信息熵要定义成-Σp*log(p)?
作者:西贝链接:https://www.zhihu.com/question/30828247/answer/64816509来源:知乎著作权归作者所有.商业转载请联系作者获得授权,非商业转载请注明出 ...
- Springcloud 整合Hystrix 断路器,支持Feign客户端调用
1,在这篇博文中,已经大致说过了Springcloud服务保护框架 Hystrix在服务隔离,服务降级,以及服务熔断中的使用 https://www.cnblogs.com/pickKnow/p/11 ...