k-means聚类分析 python 代码实现(不使用现成聚类库)
一、实验目标
1、使用 K-means 模型进行聚类,尝试使用不同的类别个数 K,并分析聚类结果。
二、算法原理
首先确定k,随机选择k个初始点之后所有点根据距离质点的距离进行聚类分析,离某一个质点a相较于其他质点最近的点分配到a的类中,根据每一类mean值更新迭代聚类中心,在迭代完成后分别计算训 练集和测试集的损失函数SSE_train、SSE_test,画图进行分析。
伪代码如下:
num=10 #k的种类
for k in range(1,num):
随机选择k个质点
for i in range(n): #迭代n次
根据点与质点间的距离对于X_train进行聚类
根据mean值迭代更新质点
计算SSE_train
计算SSE_test
画图
算法流程图:
三、代码实现
1、导入库
import pandas as pd
import matplotlib.pyplot as plt
import numpy as np
from sklearn.model_selection import train_test_split
2、计算距离
def distance(p1,p2):
return np.sqrt((p1[0]-p2[0])**2+(p1[1]-p2[1])**2)
3、计算均值
def means(arr):
return np.array([np.mean([p[0] for p in arr]),np.mean([p[1] for p in arr])])
4、二维数据处理
#数据处理
data= pd.read_table('cluster.dat',sep='\t',header=None)
data.columns=['x']
data['y']=None
for i in range(len(data)): #遍历每一行
column = data['x'][i].split( ) #分开第i行,x列的数据。split()默认是以空格等符号来分割,返回一个列表
data['x'][i]=column[0] #分割形成的列表第一个数据给x列
data['y'][i]=column[1] #分割形成的列表第二个数据给y列
list=[]
list1=[]
for i in range(len(data)):
list.append(float(data['x'][i]))
list.append(float(data['y'][i]))
list1.append(list)
list=[]
arr=np.array(list1)
print(arr)
5、划分数据集和训练集
#按照8:2划分数据集和训练集
X_train, X_test = train_test_split(arr,test_size=0.2,random_state=1)
6、主要聚类实现
count=10 #k的种类:1、2、3...10
SSE_train=[] #训练集的SSE
SSE_test=[] #测试集的SSE
n=20 #迭代次数
for k in range(1,count):
cla_arr=[] #聚类容器
centroid=[] #质点
for i in range(k):
j=np.random.randint(0,len(X_train))
centroid.append(list1[j])
cla_arr.append([])
centroids=np.array(centroid)
cla_tmp=cla_arr #临时训练集聚类容器
cla_tmp1=cla_arr #临时测试集聚类容器
for i in range(n): #开始迭代
for e in X_train: #对于训练集中的点进行聚类分析
pi=0
min_d=distance(e,centroids[pi])
for j in range(k):
if(distance(e,centroids[j])<min_d):
min_d=distance(e,centroids[j])
pi=j
cla_tmp[pi].append(e) #添加点到相应的聚类容器中 for m in range(k):
if(n-1==i):
break
centroids[m]=means(cla_tmp[m])#迭代更新聚类中心
cla_tmp[m]=[]
dis=0
for i in range(k): #计算训练集的SSE_train
for j in range(len(cla_tmp[i])):
dis+=distance(centroids[i],cla_tmp[i][j])
SSE_train.append(dis) col = ['HotPink','Aqua','Chartreuse','yellow','red','blue','green','grey','orange'] #画出对应K的散点图
for i in range(k):
plt.scatter([e[0] for e in cla_tmp[i]],[e[1] for e in cla_tmp[i]],color=col[i])
plt.scatter(centroids[i][0],centroids[i][1],linewidth=3,s=300,marker='+',color='black')
plt.show() for e in X_test: #测试集根据训练集的质点进行聚类分析
ki=0
min_d=distance(e,centroids[ki])
for j in range(k):
if(distance(e,centroids[j])<min_d):
min_d=distance(e,centroids[j])
ki=j
cla_tmp1[ki].append(e)
for i in range(k): #计算测试集的SSE_test
for j in range(len(cla_tmp1[i])):
dis+=distance(centroids[i],cla_tmp1[i][j])
SSE_test.append(dis)
7、画图
SSE=[] #计算测试集与训练集SSE的差值
for i in range(len(SSE_test)):
SSE.append(SSE_test[i]-SSE_train[i]) x=[1,2,3,4,5,6,7,8,9]
plt.figure()
plt.plot(x,SSE_train,marker='*')
plt.xlabel("K")
plt.ylabel("SSE_train")
plt.show() #画出SSE_train的图 plt.figure()
plt.plot(x,SSE_test,marker='*')
plt.xlabel("K")
plt.ylabel("SSE_test")
plt.show() #画出SSE_test的图 plt.figure()
plt.plot(x,SSE,marker='+')
plt.xlabel("K")
plt.ylabel("SSE_test-SSE_train")
plt.show() #画出SSE_test-SSE_train的图
四、实验结果分析
可以看出SSE随着K的增长而减小,测试集和训练集的图形趋势几乎一致,在相同的K值下,测试集的SSE大于训练集的SSE。于是我对于在相同的K值下的SSE_test和SSE_train做了减法(上图3),可知K=4时数据得出结果最好。这里我主要使用肘部原则来判断。本篇并未实现轮廓系数,由于博主是python小白,故此次代码参考了一部分CSDN的博客:https://blog.csdn.net/qq_37509235/article/details/82925781
k-means聚类分析 python 代码实现(不使用现成聚类库)的更多相关文章
- kd树 求k近邻 python 代码
之前两篇随笔介绍了kd树的原理,并用python实现了kd树的构建和搜索,具体可以参考 kd树的原理 python kd树 搜索 代码 kd树常与knn算法联系在一起,knn算法通常要搜索k近邻, ...
- Python 代码风格
1 原则 在开始讨论Python社区所采用的具体标准或是由其他人推荐的建议之前,考虑一些总体原则非常重要. 请记住可读性标准的目标是提升可读性.这些规则存在的目的就是为了帮助人读写代码,而不是相反. ...
- [转] Python 代码性能优化技巧
选择了脚本语言就要忍受其速度,这句话在某种程度上说明了 python 作为脚本的一个不足之处,那就是执行效率和性能不够理想,特别是在 performance 较差的机器上,因此有必要进行一定的代码优化 ...
- Python代码性能优化技巧
摘要:代码优化能够让程序运行更快,可以提高程序的执行效率等,对于一名软件开发人员来说,如何优化代码,从哪里入手进行优化?这些都是他们十分关心的问题.本文着重讲了如何优化Python代码,看完一定会让你 ...
- Python 代码性能优化技巧(转)
原文:Python 代码性能优化技巧 Python 代码优化常见技巧 代码优化能够让程序运行更快,它是在不改变程序运行结果的情况下使得程序的运行效率更高,根据 80/20 原则,实现程序的重构.优化. ...
- Python 代码性能优化技巧
选择了脚本语言就要忍受其速度,这句话在某种程度上说明了 python 作为脚本的一个不足之处,那就是执行效率和性能不够理想,特别是在 performance 较差的机器上,因此有必要进行一定的代码优化 ...
- 数据关联分析 association analysis (Aprior算法,python代码)
1基本概念 购物篮事务(market basket transaction),如下表,表中每一行对应一个事务,包含唯一标识TID,和购买的商品集合.本文介绍一种成为关联分析(association a ...
- 一起来写2048(160行python代码)
前言: Life is short ,you need python. --Bruce Eckel 我与2048的缘,不是缘于一个玩家,而是一次,一次,重新的ACM比赛.四月份校赛初赛,第一次碰到20 ...
- 一起写2048(160行python代码)
前言: Life is short ,you need python. --Bruce Eckel 我与2048的缘,不是缘于一个玩家.而是一次,一次,重新的ACM比赛.四月份校赛初赛,第一次碰到20 ...
随机推荐
- Programming Languages_04 Deferred Substitution
Deferred Substitution 在执行出现with时,利用"substitution",每次with的出现,它都绕着整个body置换.这一方式是由F1WAE到env再到 ...
- Linux软件安装和维护
rpm 早期 redhat package manager 现在 rpm package manager rpm安装的格式: 软件名称-版本号-适用平台.rpm jdk -8u151 -linux-x ...
- ztree根据参数动态控制是否显示复选框/单选框(静态JSON数据)
本文不再更新,可能存在内容过时的情况,实时更新请访问原地址:ztree根据参数动态控制是否显示复选框/单选框(静态JSON数据): 现有全省各地区静态JSON数据,现在想通过Url参数,动态控制是否显 ...
- HMM-前向后向算法(附python实现)
基本要素 状态 \(N\)个 状态序列 \(S = s_1,s_2,...\) 观测序列 \(O=O_1,O_2,...\) \(\lambda(A,B,\pi)\) 状态转移概率 \(A = \{a ...
- C# 数据操作系列 - 6 EF Core 配置映射关系
0. 前言 在<C# 数据操作系列 - 5. EF Core 入门>篇中,我们简单的通过两个类演示了一下EF增删改查等功能.细心的小伙伴可能看了生成的DDL SQL 语句,在里面发现了些端 ...
- Springboot Mybatis 打包jar扫描bean与mapper问题研究与解决
SpringBootLean 是对springboot学习与研究项目,是根据实际项目的形式对进行配置与处理,欢迎star与fork. [oschina 地址] http://git.oschina.n ...
- java ->会话技术Cookie&Session
会话技术Cookie&Session 会话技术简介 存储客户端的状态 由一个问题引出今天的内容,例如网站的购物系统,用户将购买的商品信息存储到哪里?因为Http协议是无状态的,也就是说每个客户 ...
- 敏捷为什么会失败之「PA-SA-WAKA-DA」理论
在日常生活中,有种有趣的现象:我们更津津乐道于美好的故事,比如提到好莱坞,我们关注的只是大牌明星,却忽略了他们成名其背后的艰辛.对于那些成功的敏捷项目,也是如此.在我们见证成功的同时,却忘记了项目团队 ...
- 5.3 Go 匿名函数
5.3 Go 匿名函数 Go支持匿名函数,顾名思义就是没名字的函数. 匿名函数一般用在,函数只运行一次,也可以多次调用. 匿名函数可以像普通变量一样被调用. 匿名函数由不带函数名字的函数声明与函数体组 ...
- zz 关于插入意向间隔锁( insert intention gap lock)产生的死锁问题
出处: http://www.cnblogs.com/sunss/p/3166550.html 昨天看到一个很有意思的死锁,拿来记录下: 环境:deadlock on 事务隔离级别: read com ...