最近,阿里巴巴Java开发手册发布了最新版——泰山版,这个名字起的不错,一览众山小。

新版新增了30+规约,其中有一条规约引起了作者的关注,那就是手册中提到在三目运算符使用过程中,需要注意自动拆箱导致的NullPointerException(后文简称:NPE)问题:

因为这个问题我很久之前(2015年)遇到过,曾经在博客中也记录过,刚好最新的开发手册再次提到了这个知识点,于是把之前的文章内容翻出来并重新整理了一下,带大家一起回顾下这个知识点。

可能有些人看过我之前那篇文章,本文并不是单纯的"旧瓶装新酒",在重新梳理这个知识点的时候,作者重新翻阅了《The Java Language Specification》,并且对比了Java SE 7 和 Java SE 8之后的相关变化,希望可以帮助大家更加全面的理解这个问题。

基础回顾

在详细展看介绍之前,先简单介绍下本文要涉及到的几个重要概念,分别是"三目运算符"、"自动拆装箱"等,如果大家对于这些历史知识有所掌握的话,可以先跳过本段内容,直接看问题重现部分即可。

三目运算符

在《The Java Language Specification》中,三目运算符的官方名称是 Conditional Operator ? : ,我一般称呼他为条件表达式,详细介绍在JLS 15.25中,这里简单介绍下其基本形式和用法:

三目运算符是Java语言中的重要组成部分,它也是唯一有3个操作数的运算符。形式为:

<表达式1> ? <表达式2> : <表达式3>

以上,通过组合的形式得到一个条件表达式。其中运算符的含义是:先求表达式1的值,如果为真,则执行并返回表达式2的结果;如果表达式1的值为假,则执行并返回表达式3的结果。

值得注意的是,一个条件表达式从不会既计算<表达式2>,又计算<表达式3>。条件运算符是右结合的,也就是说,从右向左分组计算。例如,a?b:c?d:e将按a?b:(c?d:e)执行。

自动装箱与自动拆箱

介绍过了三目运算符(条件表达式)之后,我们再来简单介绍下Java中的自动拆装箱相关知识点。

每一个Java开发者一定都对Java中的基本数据类型不陌生,Java中共有8种基本数据类型,这些基础数据类型带来一个好处就是他们直接在栈内存中存储,不会在堆上分配内存,使用起来更加高效。

但是,Java语言是一个面向对象的语言,而基本数据类型不是对象,导致在实际使用过程中有诸多不便,如集合类要求其内部元素必须是Object类型,基本数据类型就无法使用。

所以,相对应的,Java提供了8种包装类型,更加方便在需要对象的地方使用。

有了基本数据类型和包装类,带来了一个麻烦就是需要在他们之间进行转换。在Java SE5中,为了减少开发人员的工作,Java提供了自动拆箱与自动装箱功能。

自动装箱: 就是将基本数据类型自动转换成对应的包装类。

自动拆箱:就是将包装类自动转换成对应的基本数据类型。

Integer i =10;  //自动装箱
int b= i; //自动拆箱

我们可以简单理解为,当我们自己写的代码符合装(拆)箱规范的时候,编译器就会自动帮我们拆(装)箱。

自动装箱都是通过包装类的valueOf()方法来实现的.自动拆箱都是通过包装类对象的xxxValue()来实现的(如booleanValue()、longValue()等)。

问题重现

在最新版的开发手册中给出了一个例子,提示我们在使用三目运算符的过程中,可能会进行自动拆箱而导致NPE问题。

原文中的例子相对复杂一些,因为他还涉及到多个Integer相乘的结果是int的问题,我们举一个相对简单的一点的例子先来重现下这个问题:

boolean flag = true; //设置成true,保证条件表达式的表达式二一定可以执行
boolean simpleBoolean = false; //定义一个基本数据类型的boolean变量
Boolean nullBoolean = null;//定义一个包装类对象类型的Boolean变量,值为null boolean x = flag ? nullBoolean : simpleBoolean; //使用三目运算符并给x变量赋值

以上代码,在运行过程中,会抛出NPE:

Exception in thread "main" java.lang.NullPointerException

而且,这个和你使用的JDK版本是无关的,作者分别在JDK 6、JDK 8和JDK 14上做了测试,均会抛出NPE。

为了一探究竟,我们尝试对以上代码进行反编译,使用jad工具进行反编译后,得到以下代码:

boolean flag = true;
boolean simpleBoolean = false;
Boolean nullBoolean = null;
boolean x = flag ? nullBoolean.booleanValue() : simpleBoolean;

可以看到,反编译后的代码的最后一行,编译器帮我们做了一次自动拆箱,而就是因为这次自动拆箱,导致代码出现对于一个null对象(nullBoolean.booleanValue())的调用,导致了NPE。

那么,为什么编译器会进行自动拆箱呢?什么情况下需要进行自动拆箱呢?

原理分析

关于为什么编辑器会在代码编译阶段对于三目运算符中的表达式进行自动拆箱,其实在《The Java Language Specification》(后文简称JLS)的第15.25章节中是有相关介绍的。

在不同版本的JLS中,关于这部分描述虽然不尽相同,尤其在Java 8中有了大幅度的更新,但是其核心内容和原理是不变的。我们直接看Java SE 1.7 JLS中关于这部分的描述(因为1.7的表述更加简洁一些):

The type of a conditional expression is determined as follows: • If the second and third operands have the same type (which may be the null type),then that is the type of the conditional expression. • If one of the second and third operands is of primitive type T, and the type of the other is the result of applying boxing conversion (§5.1.7) to T, then the type of the conditional expression is T.

简单的来说就是:当第二位和第三位操作数的类型相同时,则三目运算符表达式的结果和这两位操作数的类型相同。当第二,第三位操作数分别为基本类型和该基本类型对应的包装类型时,那么该表达式的结果的类型要求是基本类型。

为了满足以上规定,又避免程序员过度感知这个规则,所以在编译过程中编译器如果发现三目操作符的第二位和第三位操作数的类型分别是基本数据类型(如boolean)以及该基本类型对应的包装类型(如Boolean)时,并且需要返回表达式为包装类型,那么就需要对该包装类进行自动拆箱。

在Java SE 1.8 JLS中,关于这部分描述又做了一些细分,再次把表达式区分成布尔型条件表达式(Boolean Conditional Expressions)、数值型条件表达式(Numeric Conditional Expressions)和引用类型条件表达式(Reference Conditional Expressions)。

并且通过表格的形式明确的列举了第二位和第三位分别是不同类型时得到的表达式结果值应该是什么,感兴趣的大家可以去翻阅一下。

其实简单总结下,就是:当第二位和第三位表达式都是包装类型的时候,该表达式的结果才是该包装类型,否则,只要有一个表达式的类型是基本数据类型,则表达式得到的结果都是基本数据类型。如果结果不符合预期,那么编译器就会进行自动拆箱。(即Java开发手册中总结的:只要表达式1和表达式2的类型有一个是基本类型,就会做触发类型对齐的拆箱操作,只不过如果都是基本类型也就不需要拆箱了。)

如下3种情况是我们熟知该规则,在声明表达式的结果的类型时刻意和规则保持一致的情况(为了帮助大家理解,我备注了注释和反编译后的代码):

boolean flag = true;
boolean simpleBoolean = false;
Boolean objectBoolean = Boolean.FALSE; //当第二位和第三位表达式都是对象时,表达式返回值也为对象;
Boolean x1 = flag ? objectBoolean : objectBoolean;
//反编译后代码为:Boolean x1 = flag ? objectBoolean : objectBoolean;
//因为x1的类型是对象,所以不需要做任何特殊操作。 //当第二位和第三位表达式都为基本类型时,表达式返回值也为基本类型;
boolean x2 = flag ? simpleBoolean : simpleBoolean;
//反编译后代码为:boolean x2 = flag ? simpleBoolean : simpleBoolean;
//因为x2的类型也是基本类型,所以不需要做任何特殊操作。 //当第二位和第三位表达式中有一个为基本类型时,表达式返回值也为基本类型;
boolean x3 = flag ? objectBoolean : simpleBoolean;
//反编译后代码为:boolean x3 = flag ? objectBoolean.booleanValue() : simpleBoolean;
//因为x3的类型是基本类型,所以需要对其中的包装类进行拆箱。

因为我们熟知三目运算符的规则,所以我们就会按照以上方式去定义x1、x2和x3的类型。

但是,并不是所有人都熟知这个规则,所以在实际应用中,还会出现以下三种定义方式:

//当第二位和第三位表达式都是对象时,表达式返回值也为对象;
boolean x4 = flag ? objectBoolean : objectBoolean;
//反编译后代码为:boolean x4 = (flag ? objectBoolean : objectBoolean).booleanValue();
//因为x4的类型是基本类型,所以需要对表达式结果进行自动拆箱。 //当第二位和第三位表达式都为基本类型时,表达式返回值也为基本类型;
Boolean x5 = flag ? simpleBoolean : simpleBoolean;
//反编译后代码为:Boolean x5 = Boolean.valueOf(flag ? simpleBoolean : simpleBoolean);
//因为x5的类型是对象类型,所以需要对表达式结果进行自动装箱。 //当第二位和第三位表达式中有一个为基本类型时,表达式返回值也为基本类型;
Boolean x6 = flag ? objectBoolean : simpleBoolean;
//反编译后代码为:Boolean x6 = Boolean.valueOf(flag ? objectBoolean.booleanValue() : simpleBoolean);
//因为x6的类型是对象类型,所以需要对表达式结果进行自动装箱。

所以,日常开发中就有可能出现以上6种情况。聪明的读者们读到这里也一定想到了,在以上6种情况中,如果是涉及到自动拆箱的,一旦对象的值为null,就必然会发生NPE。

举例验证,我们把以上的x3、x4以及x6中的的对象类型设置成null,分别执行下代码:

Boolean nullBoolean = null;
boolean x3 = flag ? nullBoolean : simpleBoolean;
boolean x4 = flag ? nullBoolean : objectBoolean;
Boolean x6 = flag ? nullBoolean : simpleBoolean;

以上三种情况,都会在执行时发生NPE。

其中x3和x6是三目运算符运算过程中,根据JLS的规则确定类型的过程中要做自动拆箱而导致的NPE。由于使用了三目运算符,并且第二、第三位操作数分别是基本类型和对象。就需要对对象进行拆箱操作,由于该对象为null,所以在拆箱过程中调用null.booleanValue()的时候就报了NPE。

而x4是因为三目运算符运算结束后根据规则他得到的是一个对象类型,但是在给变量赋值过程中进行自动拆箱所导致的NPE。

小结

如前文介绍,在开发过程中,如果涉及到三目运算符,那么就要高度注意其中的自动拆装箱问题。

最好的做法就是保持三目运算符的第二位和第三位表达式的类型一致,并且如果要把三目运算符表达式给变量赋值的时候,也尽量保持变量的类型和他们保持一致。并且,做好单元测试!!!

所以,Java开发手册中提到要高度注意第二位和第三位表达式的类型对齐过程中由于自动拆箱发生的NPE问题,其实还需要注意使用三目运算符表达式给变量赋值的时候由于自动拆箱导致的NPE问题。

至此,我们已经介绍完了Java开发手册中关于三目运算符使用过程中可能会导致NPE的问题。

如果一定要给出一个方法论去避免这个问题的话,那么在使用的过程中,无论是三目运算符中的三个表达式,还是三目运算符表达式要赋值的变量,最好都使用包装类型,可以减少发生错误的概率。

正文内容已完,如果大家对这个问题还有更深的兴趣的话,接下来部分内容是扩展内容,也欢迎学习,不过这部分涉及到很多JLS的规范,如果实在看不懂也没关系~

扩展思考

为了方便大家理解,我使用了简单的布尔类型的例子说明了NPE的问题。但是实际在代码开发中,遇到的场景可能并没有那么简单,比如说以下代码,大家猜一下能否正常执行:

Map<String,Boolean> map =  new HashMap<String, Boolean>();
Boolean b = (map!=null ? map.get("Hollis") : false);

如果你的答案是"不能,这里会抛NPE"那么说明你看懂了本文的内容,但是,我只能说你只是答对了一半。

因为以上代码,在小于JDK 1.8的版本中执行的结果是NPE,在JDK 1.8 及以后的版本中执行结果是null。

之所以会出现这样的不同,这个就说来话长了,我挑其中的重点内容简单介绍下吧,以下内容主要内容还是围绕Java 8 的JLS 。

JLS 15中对条件表达式(三目运算符)做了细分之后分为三种,区分方式:

如果表达式的第二个和第三个操作数都是布尔表达式,那么该条件表达式就是布尔表达式

如果表达式的第二个和第三个操作数都是数字型表达式,那么该条件表达式就是数字型表达式

除了以上两种以外的表达式就是引用表达式

因为Boolean b = (map!=null ? map.get("Hollis") : false);表达式中,第二位操作数为map.get("test"),虽然Map在定义的时候规定了其值类型为Boolean,但是在编译过程中泛型是会被擦除的(泛型的类型擦除),所以,其结果就是Object。那么根据以上规则判断,这个表达式就是引用表达式。

又跟据JLS15.25.3中规定:

如果引用条件表达式出现在赋值上下文或调用上下文中,那么条件表达式就是合成表达式

因为,Boolean b = (map!=null ? map.get("Hollis") : false);其实就是一个赋值上下文(关于赋值上下文相见JLS 5.2),所以map!=null ? map.get("Hollis") : false;就是合成表达式。

那么JLS15.25.3中对合成表达式的操作数类型做了约束:

合成的引用条件表达式的类型与其目标类型相同

所以,因为有了这个约束,编译器就可以推断(Java 8 中类型推断,详见JLS 18)出该表达式的第二个操作数和第三个操作数的结果应该都是Boolean类型。

所以,在编译过程中,就可以分别把他们都转成Boolean即可,那么以上代码在Java 8中反编译后内容如下:

Boolean b = maps == null ? Boolean.valueOf(false) : (Boolean)maps.get("Hollis");

但是在Java 7中可没有这些规定(Java 8之前的类型推断功能还很弱),编译器只知道表达式的第二位和第三位分别是基本类型和包装类型,而无法推断最终表达式类型。

那么他就会先根据JLS 15.25的规定,把返回值结果转换成基本类型。然后在进行变量赋值的时候,再转换成包装类型:

Boolean b = Boolean.valueOf(maps == null ? false : ((Boolean)maps.get("Hollis")).booleanValue());

所以,相比Java 8中多了一步自动拆箱,所以会导致NPE。

《解读Java开发手册》电子书来了,灵魂13问,深入剖析Java规约背后的原理,从"问题重现"到"原理分析"再到"问题解决",深入挖掘阿里巴巴开发思维!《Java开发手册》必备伴读书目。

关注公众号,后台回复『Java手册』即可下载。

参考资料:

《Java开发手册——泰山版》

http://docs.oracle.com/javase/specs/jls/se7/html/jls-15.html#jls-15.25

http://docs.oracle.com/javase/specs/jls/se8/html/jls-15.html#jls-15.25

https://docs.oracle.com/javase/specs/jls/se8/html/jls-15.html#jls-15.2

https://docs.oracle.com/javase/specs/jls/se7/html/jls-15.html#jls-15.12.2.7

https://docs.oracle.com/javase/specs/jls/se8/html/jls-18.html

《新版阿里巴巴Java开发手册》提到的三目运算符的空指针问题到底是个怎么回事?的更多相关文章

  1. 304902阿里巴巴Java开发手册1.4.0

    转自官网 前言 <阿里巴巴Java开发手册>是阿里巴巴集团技术团队的集体智慧结晶和经验总结,经历了多次大规模一线实战的检验及不断完善,系统化地整理成册,回馈给广大开发者.现代软件行业的高速 ...

  2. 阿里巴巴 Java 开发手册 1.4.0

    一.编程规约(一) 命名风格1. [强制]代码中的命名均不能以下划线或美元符号开始,也不能以下划线或美元符号结束.反例: _name / __name / $name / name_ / name$ ...

  3. 阿里巴巴Java开发手册(华山版)

    插件下载地址: https://github.com/alibaba/p3c 2018年9月22日,在2018杭州云栖大会上,召开<码出高效:Java 开发手册>新书发布会,并宣布将图书所 ...

  4. 读阿里巴巴Java开发手册v1.2.0之编程规约有感【架构篇】

     不为过去蹉跎,改变当下. 为什么开篇就送这么一句话给大家,我相信很多处于1-3年码龄的哥们儿们,在平时的编码历程中编码的个性可能是多彩的,每个人都有每个人特定的风格,但是我们现在这么随意写,以后这么 ...

  5. 《阿里巴巴Java开发手册》代码格式部分应用——idea中checkstyle的使用教程

    <阿里巴巴Java开发手册>代码格式部分应用--idea中checkstyle的使用教程 1.<阿里巴巴Java开发手册> 这是阿里巴巴工程师送给各位软件工程师的宝典,就像开车 ...

  6. 阿里巴巴Java开发手册——速读记录

    本随笔基于阿里巴巴Java开发手册V1.2,陆陆续续记录一些现阶段能理解的,有启发的内容,并将持续更新 最佳实践——插件使用已经发布为随笔!http://www.cnblogs.com/jiangbe ...

  7. 2019.05.26 周日--《阿里巴巴 Java 开发手册》精华摘要

    一.写在开头 Java作为一个编程界最流行的语言之一,有着很强的生命力.代码的编写规范也是不容忽视的,今天,我就把自己阅读的国内的互联网巨头阿里巴巴的<阿里巴巴 Java 开发手册>一些精 ...

  8. 《阿里巴巴Java开发手册》更新为《Java开发手册》

    新版一览:华山版<Java开发手册> <阿里巴巴Java开发手册>始于阿里内部规约,在全球Java开发者共同努力下,已成为业界普遍遵循的开发规范,涵盖编程规约.异常日志.单元测 ...

  9. 《阿里巴巴Java开发手册》改名《Java开发手册》,涵盖史无前例的三大升级

    2019.06.19 <阿里巴巴Java开发手册>时隔一年,发布更新1.5.0华山版.同时,将更名为<Java开发手册>,涵盖史无前例的三大升级 1)鉴于本手册是社区开发者集体 ...

随机推荐

  1. centos7安装puppet详细教程(简单易懂,小白也可以看懂的教程)

    简介: Puppet是一种linux.unix平台的集中配置管理系统,使用ruby语言,可配置文件.用户.cron任务.软件包.系统服务等.Puppet把这些系统实体称之为资源,它的设计目标是简化对这 ...

  2. 算法:模拟退火(基于c++程序)

    一 什么是模拟退火算法? 所谓退火,其实是金属冶炼的一个名词.比如加工一把刀,我们通常是把材料加工到很高的一个温度,加以锤炼.之后慢慢的将温度降下来,如果我们降温的控制比较好的话,那么金属里面的原子就 ...

  3. conda命令详解

    显示已有环境信息 conda info --envs 创建环境 conda create --name [环境名] python=[版本号] 删除环境 conda remove --name [环境名 ...

  4. Codeup 25594 Problem H 例题5-8 Fibonacci数列

    题目描述 输入一个正整数n,求Fibonacci数列的第n个数.Fibonacci数列的特点:第1,2个数为1,1.从第3个数开始,概述是前面两个数之和.即: 1,1,2,3,5,8,13,21 - ...

  5. C++_编程前奏

    计算机硬件系统 计算机操作系统的五大组成部分 计算机操作系统的组成部分 构成 控制器 指令寄存器(IR)/程序计数器(PC)/操作控制器(OC) 运算器 算数逻辑单元/累加器/状态寄存器/通用寄存器 ...

  6. AJ学IOS(01) UI之Hello World与加法计算器

    不多说,AJ分享,必须精品 这两个一个是HelloWorld(左边) 另一个是 加法计算器(右边)的截图. 先运行第一个 程序看看效果 1.打开Xcode(没有哦mac系统的没有xcode的帮你们默哀 ...

  7. layoutInflater参数解析与源码分析

    关于LayoutInflater方法,无论是在listview的适配器中,还是在动态添加view的时候,都会出现它的身影,最开始我在看<第一行代码>时,不知道这个方法实际的参数到底指的是什 ...

  8. ActiveMQ支持的消息协议

    ActiveMQ支持哪些协议 ActiveMQ支持多种协议传输和传输方式,允许客户端使用多种协议连接ActiveMQ支持的协议:AUTO,OpenWire,AMQP,Stomp,MQTT等Active ...

  9. Python程序设计实验报告二:顺序结构程序设计(验证性实验)

      安徽工程大学 Python程序设计 实验报告 班级   物流191   姓名  崔攀  学号3190505136 成绩 日期     2020.3.22     指导老师       修宇 [实验 ...

  10. Canvas(3)---绘制饼状图

    Canvas(3)---绘制饼状图 有关canvas之前有写过两篇文章 1.Canvas(1)---概述+简单示例 2.Canvas(2)---绘制折线图 在绘制饼状图之前,我们先要理解什么是圆弧,如 ...