「BJOI2018」求和
「BJOI2018」求和
传送门
观察到 \(k\) 很小而且模数不会变,所以我们直接预处理 \(k\) 取所有值时树上前缀答案,查询的时候差分一下即可。
参考代码:
#include <algorithm>
#include <cstdio>
#define rg register
#define file(x) freopen(x".in", "r", stdin), freopen(x".out", "w", stdout)
using namespace std;
template < class T > inline void read(T& s) {
s = 0; int f = 0; char c = getchar();
while ('0' > c || c > '9') f |= c == '-', c = getchar();
while ('0' <= c && c <= '9') s = s * 10 + c - 48, c = getchar();
s = f ? -s : s;
}
const int _ = 3e5 + 5, p = 998244353;
int tot, head[_], nxt[_ << 1], ver[_ << 1];
inline void Add_edge(int u, int v)
{ nxt[++tot] = head[u], head[u] = tot, ver[tot] = v; }
int n, m, dep[_], val[51][_], fa[20][_];
inline int power(int x, int k) {
int res = 1;
for (; k; k >>= 1, x = 1ll * x * x % p)
if (k & 1) res = 1ll * res * x % p;
return res % p;
}
inline void dfs(int u, int f, int d) {
dep[u] = d, fa[0][u] = f;
for (rg int i = 1; i <= 19; ++i)
fa[i][u] = fa[i - 1][fa[i - 1][u]];
for (rg int k = 1; k <= 50; ++k)
val[k][u] = (val[k][f] + power(d, k)) % p;
for (rg int i = head[u]; i; i = nxt[i]) {
int v = ver[i]; if (v == f) continue ;
dfs(v, u, d + 1);
}
}
inline int LCA(int x, int y) {
if (dep[x] < dep[y]) swap(x, y);
for (rg int i = 19; ~i; --i)
if (dep[fa[i][x]] >= dep[y]) x = fa[i][x];
if (x == y) return x;
for (rg int i = 19; ~i; --i)
if (fa[i][x] != fa[i][y]) x = fa[i][x], y = fa[i][y];
return fa[0][x];
}
inline int dist(int x, int y, int k) {
int lca = LCA(x, y), res = 0;
res = (val[k][x] - val[k][lca] + p) % p;
res = (res + (val[k][y] - val[k][fa[0][lca]] + p) % p) % p;
return res;
}
int main() {
#ifndef ONLINE_JUDGE
file("cpp");
#endif
read(n);
for (rg int u, v, i = 1; i < n; ++i)
read(u), read(v), Add_edge(u, v), Add_edge(v, u);
dfs(1, 0, 0);
read(m);
for (rg int x, y, k; m--; )
read(x), read(y), read(k), printf("%d\n", dist(x, y, k));
return 0;
}
「BJOI2018」求和的更多相关文章
- 【LOJ】#2491. 「BJOI2018」求和
题解 对于50个k都维护一个\(i^k\)前缀和即可 查询的时候就是查询一段连续的区间和,再加上根节点的 代码 #include <bits/stdc++.h> #define fi fi ...
- 「BJOI2018」链上二次求和
「BJOI2018」链上二次求和 https://loj.ac/problem/2512 我说今天上午写博客吧.怕自己写一上午,就决定先写道题. 然后我就调了一上午线段树. 花了2h找到lazy标记没 ...
- 【LOJ】#2512. 「BJOI2018」链上二次求和
题面 题解 转化一下可以变成所有小于等于r的减去小于等于l - 1的 然后我们求小于等于x的 显然是 \(\sum_{i = 1}^{n} \sum_{j = 1}^{min(i,x)} sum[i] ...
- 【LOJ】#2513. 「BJOI2018」治疗之雨
题解 具体就是列一个未知数方程\(dp[i]\)表示有\(i\)滴血的时候期望多少轮 \(dp[i] = 1 + \sum_{j = 1}^{i + 1} a_{i,j}dp[j]\) \(dp[n] ...
- 【LOJ】#2511. 「BJOI2018」双人猜数游戏
题解 设\(f[p][a][b]\)表示询问了\(p\)次,答案是\(a,b\)是否会被猜出来 然后判断如果\(p = 1\) 第一个问的\(Alice\),那么\([s,\sqrt{nm}]\)约数 ...
- 【LOJ】#2493. 「BJOI2018」染色
题面 题解 推结论大题--然而我推不出什么结论 奇环显然是NO 如果一个联通块里有两个分离的环,也是NO 如果一个联通块里,点数为n,边数为m m <= n的时候,是YES m >= n ...
- 【LOJ】#2492. 「BJOI2018」二进制
题解 每次开这样的数据结构题感想都大概是如下两点 1.为什么别人代码长度都是我的1/2???? 2.为什么我运行时间都是他们的两倍???? 简单分析一下,我们关注一个区间是否合法只关注这个区间有多少个 ...
- 「BJOI2018」治疗之雨
传送门 Description 有\(m+1\)个数,第一个数为\(p\),每轮:选一个数\(+1\),再依次选\(k\)个数\(-1\) 要求如果第一个数\(=N\),不能选它\(+1\),如果第一 ...
- 【LOJ2513】「BJOI2018」治疗之雨
题意 你现在有 \(m+1\) 个数:第一个为 \(p\) ,最小值为 \(0\) ,最大值为 \(n\) :剩下 \(m\) 个都是无穷,没有最小值或最大值.你可以进行任意多轮操作,每轮操作如下: ...
随机推荐
- synchronized锁机制的实现原理
Synchronized 锁机制的实现原理 Synchronized是Java种用于进行同步的关键字,synchronized的底层使用的是锁机制实现的同步.在Java中的每一个对象都可以作为锁. J ...
- SDNU_ACM_ICPC_2020_Winter_Practice_4th
H - Triangle 思路:用了斐波那契数列,因为数列中的任意三数都无法组成三角形,所以将1,2,3,,,n变成斐波那契数列就符合条件: #include <iostream> u ...
- 消息队列(四)--- RocketMQ-消息发送
概述 RocketMQ 发送普通消息有三种 可靠同步发送 可靠异步发送 单向(oneway)发送 :只管发送,直接返回,不等待消息服务器的结果,也不注册回调函数,简单地说,就是只管发,不管信息是否发送 ...
- 【前端之BOM和DOM】
" 目录 #. window对象介绍 #. window子对象 1. 浏览器对象 navigator 2. 屏幕对象 screen 3. 历史 history 4. 地址(URL) loc ...
- Linux虚拟机(CentOS)安装gcc, g++
1. 确保自己的虚拟机联网 点击那个三角形可以选择连接网络 如果还是连不了网,参考https://www.cnblogs.com/xingbo/p/6100554.html 2.联网后,使用命令 ...
- windows server 2016系统安装
- php 单机redis 常用命令
一.Redis连接与认证 //连接参数:ip.端口.连接超时时间,连接成功返回true,否则返回false $ret = $redis->connect('127.0.0.1', 6379, 3 ...
- CDH 搭建 问题
1. 问题描述: java.sql.SQLException: Access denied for user 'xxx'@'xxx.xxx.xxx.xxx' (using password: YES ...
- 关于Debug Assertion Failed问题
书上代码: #include<stdio.h> #include<stdlib.h> /* 提供malloc().free()函数 */ #include<string. ...
- LinkStack(链栈)
链栈即链式栈,也就是说我们不用再考虑空间的大小,可随心所欲的进行数据的插入/删除了.和顺序栈一样,仍然要保持其stack的特性,只在一端进行插入和删除,后进先出. (2018-02-14 代码更新) ...