C. Gas Pipeline
time limit per test

2 seconds

memory limit per test

256 megabytes

input

standard input

output

standard output

You are responsible for installing a gas pipeline along a road. Let's consider the road (for simplicity) as a segment [0,n]

on OX axis. The road can have several crossroads, but for simplicity, we'll denote each crossroad as an interval (x,x+1) with integer x. So we can represent the road as a binary string consisting of n

characters, where character 0 means that current interval doesn't contain a crossroad, and 1 means that there is a crossroad.

Usually, we can install the pipeline along the road on height of 1

unit with supporting pillars in each integer point (so, if we are responsible for [0,n] road, we must install n+1 pillars). But on crossroads we should lift the pipeline up to the height 2

, so the pipeline won't obstruct the way for cars.

We can do so inserting several zig-zag-like lines. Each zig-zag can be represented as a segment [x,x+1]

with integer x consisting of three parts: 0.5 units of horizontal pipe + 1 unit of vertical pipe + 0.5 of horizontal. Note that if pipeline is currently on height 2, the pillars that support it should also have length equal to 2

units.

Each unit of gas pipeline costs us a

bourles, and each unit of pillar — b bourles. So, it's not always optimal to make the whole pipeline on the height 2

. Find the shape of the pipeline with minimum possible cost and calculate that cost.

Note that you must start and finish the pipeline on height 1

and, also, it's guaranteed that the first and last characters of the input string are equal to 0.

Input

The fist line contains one integer T

(1≤T≤100) — the number of queries. Next 2⋅T

lines contain independent queries — one query per two lines.

The first line contains three integers n

, a, b (2≤n≤2⋅105, 1≤a≤108, 1≤b≤108

) — the length of the road, the cost of one unit of the pipeline and the cost of one unit of the pillar, respectively.

The second line contains binary string s

(|s|=n, si∈{0,1}, s1=sn=0

) — the description of the road.

It's guaranteed that the total length of all strings s

doesn't exceed 2⋅105

.

Output

Print T

integers — one per query. For each query print the minimum possible cost of the constructed pipeline.

Example
Input

Copy
4
8 2 5
00110010
8 1 1
00110010
9 100000000 100000000
010101010
2 5 1
00
Output

Copy
94
25
2900000000
13
Note

The optimal pipeline for the first query is shown at the picture above.

The optimal pipeline for the second query is pictured below:

The optimal (and the only possible) pipeline for the third query is shown below:

The optimal pipeline for the fourth query is shown below:

题意:

给一个长度为n的01串,和建单位长度的管道的代价a和单位长度的柱子b的代价,有4种柱子,低管道代价为a+b,高管道代价为a+2*b,上升管道代价为2*a+b,下降管道代价为2*a+2*b,01串中1代表要建高管道,一段高管道前要建上升管道,后要建下降管道,如果一个地方既要上升管道有要下降管道,则那个地方必须为高管道,问建这个区域管道和柱子的最小代价

思路:

读入01串后给管道分类,低管道为0,高管道为1,上升管道为2,下降管道为3,如果这个管道既要上升又要下降,则必须建高管道,再提取出上升管道和下降管道(这里设i从0开始),注意到只能是中间的某些下降管道到下一个上升管道这段看要不要换成全部都是高管道来比较代价,注意题中规定第1个管道必定是低管道或上升管道,最后一个必定是下降管道或低管道,下面的每个格子代价计算的是格子左边柱子的代价和格子管道的代价,在第一次访问时i为偶数是上升管道,但前面没有下降管道,故要算建低管道的代价和上升管道的代价,在最后一次访问时i为奇数时下降管道,但后面没有上升管道了,故要算建下降管道和低管道的代价,如果在中间,由于管道有升就有降且必定先升再降,而且才0开始存上升下降位置,所以偶数位存上升管道,奇数位置存下降管道,如果现在这个管道是下降管道,have计算从下降管道到上升管道之间有多少个高度低管道注意这里要开long long,不然会溢出,在可以先下降在上升的管道区域要判断是否这样建还是不下降而是继续全建高管道,选一个代价小的建,用2*a-b>=have*b这个公式判断,它是这样推出来的,设1类为这一段建下降管道,低管道,上升管道,2类为这一段全建高管道,1类的代价为(4*a+3*b+have*(a+b)),2类代价为(have+2)*(a+2*b),可见1类和2类在have不同时代价不同,所以可以做差来比较它们的大小,即推出此公式如果现在这个是上升管道则只算高管道有多少,因为第一个上升管道代价第一次时已经算过了,而中间碰到下降管道时计算代价是下降管道+低管道+上升管道.还要判断如果没有上升和下降的管道则全建低管道,输出答案时最后一个管道的右边柱子的代价要加上

 #include<bits/stdc++.h>
using namespace std;
const int amn=2e5+;
long long m[amn],jg[amn];
int main(){
long long T,n,a,b,st,ed,tp=;long long ans;char in;
ios::sync_with_stdio();
cin>>T;
while(T--){
tp=;
cin>>n>>a>>b;
st=-;ans=ed=;
for(int i=;i<n;i++){cin>>in;if(in=='')m[i]=;else m[i]=;}m[n]=;
for(int i=;i<n;i++){
if(m[i]==){
if(st==-)st=i-;
if(i>){
if(m[i-]==)m[i-]=;
else m[i-]=; ///如果这个管道既要上升又要下降,则必须建高管道
}
if(i+<n){
if(m[i+]==){m[i+]=;ed=i+;}
else m[i+]=; ///如果这个管道既要上升又要下降,则必须建高管道(其实这里不用判断,因为前面还没判断过,不可能有2,只可能时1或0
}
}
}
for(int i=;i<n;i++)
if(m[i]==||m[i]==)jg[tp++]=i;
for(int i=;i<tp;i++){ ///注意位置i从0开始哦! 注意题中规定第1个管道必定是低管道或上升管道,最后一个必定是下降管道或低管道,下面的每个格子代价计算的是格子左边柱子的代价和格子管道的代价,低管道a+b,高管道a+2*b,上升管道2*a+b,下降管道2*a+2*b
if(i==) ///在第一次访问时i为偶数是上升管道,但前面没有下降管道,故要算建低管道的代价和上升管道的代价
ans+=jg[i]*(a+b)+*a+b;
else if(i==tp-) ///在最后一次访问时i为奇数时下降管道,但后面没有上升管道了,故要算建下降管道和低管道的代价
ans+=(n--jg[i])*(a+b)+*a+*b;
if(i!=tp-){ ///如果在中间
if(i&){ ///由于管道有升就有降且必定先升再降,而且才0开始存上升下降位置,所以偶数位存上升管道,奇数位置存下降管道
long long have=jg[i+]-jg[i]-; ///have计算从下降管道到上升管道之间有多少个高度低管道注意这里要开long long,不然会溢出
if(*a-b>=have*b) ///在可以先下降在上升的管道区域要判断是否这样建还是不下降而是继续全建高管道,选一个代价小的建,用2*a-b>=have*b这个公式判断,它是这样推出来的,设1类为这一段建下降管道,低管道,上升管道,2类为这一段全建高管道,1类的代价为(4*a+3*b+have*(a+b)),2类代价为(have+2)*(a+2*b),可见1类和2类在have不同时代价不同,所以可以做差来比较它们的大小,即推出此公式
ans+=(have+)*(a+*b);
else
ans+=(*a+*b+have*(a+b));
}
else ///如果现在这个是上升管道则只算高管道有多少,因为第一个上升管道代价第一次时已经算过了,而中间碰到下降管道时计算代价是下降管道+低管道+上升管道
ans+=(jg[i+]-jg[i]-)*(a+*b);
}
}
if(tp==) ///如果没有上升和下降的管道则全建低管道
ans+=n*(a+b);
printf("%lld\n",ans+b); ///最后一个管道的右边柱子的代价要加上
}
}
/**
给一个长度为n的01串,和建单位长度的管道的代价a和单位长度的柱子b的代价,有4种柱子,低管道代价为a+b,高管道代价为a+2*b,上升管道代价为2*a+b,下降管道代价为2*a+2*b,01串中1代表要建高管道,一段高管道前要建上升管道,后要建下降管道,如果一个地方既要上升管道有要下降管道,则那个地方必须为高管道,问建这个区域管道和柱子的最小代价
读入01串后给管道分类,低管道为0,高管道为1,上升管道为2,下降管道为3,如果这个管道既要上升又要下降,则必须建高管道,再提取出上升管道和下降管道(这里设i从0开始),注意到只能是中间的某些下降管道到下一个上升管道这段看要不要换成全部都是高管道来比较代价,
注意题中规定第1个管道必定是低管道或上升管道,最后一个必定是下降管道或低管道,下面的每个格子代价计算的是格子左边柱子的代价和格子管道的代价,
在第一次访问时i为偶数是上升管道,但前面没有下降管道,故要算建低管道的代价和上升管道的代价,在最后一次访问时i为奇数时下降管道,但后面没有上升管道了,故要算建下降管道和低管道的代价,
如果在中间,由于管道有升就有降且必定先升再降,而且才0开始存上升下降位置,所以偶数位存上升管道,奇数位置存下降管道,
如果现在这个管道是下降管道,have计算从下降管道到上升管道之间有多少个高度低管道注意这里要开long long,不然会溢出,在可以先下降在上升的管道区域要判断是否这样建还是不下降而是继续全建高管道,选一个代价小的建,用2*a-b>=have*b这个公式判断,它是这样推出来的,设1类为这一段建下降管道,低管道,上升管道,2类为这一段全建高管道,1类的代价为(4*a+3*b+have*(a+b)),2类代价为(have+2)*(a+2*b),可见1类和2类在have不同时代价不同,所以可以做差来比较它们的大小,即推出此公式
如果现在这个是上升管道则只算高管道有多少,因为第一个上升管道代价第一次时已经算过了,而中间碰到下降管道时计算代价是下降管道+低管道+上升管道.
还要判断如果没有上升和下降的管道则全建低管道,
输出答案时最后一个管道的右边柱子的代价要加上
**/

[贪心,dp] Educational Codeforces Round 71 (Rated for Div. 2) C. Gas Pipeline (1207C)的更多相关文章

  1. Educational Codeforces Round 71 (Rated for Div. 2)-F. Remainder Problem-技巧分块

    Educational Codeforces Round 71 (Rated for Div. 2)-F. Remainder Problem-技巧分块 [Problem Description] ​ ...

  2. Educational Codeforces Round 71 (Rated for Div. 2)-E. XOR Guessing-交互题

    Educational Codeforces Round 71 (Rated for Div. 2)-E. XOR Guessing-交互题 [Problem Description] ​ 总共两次询 ...

  3. Educational Codeforces Round 71 (Rated for Div. 2) Solution

    A. There Are Two Types Of Burgers 题意: 给一些面包,鸡肉,牛肉,你可以做成鸡肉汉堡或者牛肉汉堡并卖掉 一个鸡肉汉堡需要两个面包和一个鸡肉,牛肉汉堡需要两个面包和一个 ...

  4. Educational Codeforces Round 71 (Rated for Div. 2)

    传送门 A.There Are Two Types Of Burgers 签到. B.Square Filling 签到 C.Gas Pipeline 每个位置只有"高.低"两种状 ...

  5. Educational Codeforces Round 71 (Rated for Div. 2)E. XOR Guessing

    一道容斥题 如果直接做就是找到所有出现过递减的不同排列,当时硬钢到自闭,然后在凯妹毁人不倦的教导下想到可以容斥做,就是:所有的排列设为a,只考虑第一个非递减设为b,第二个非递减设为c+两个都非递减的情 ...

  6. Educational Codeforces Round 71 (Rated for Div. 2) E XOR Guessing (二进制分组,交互)

    E. XOR Guessing time limit per test1 second memory limit per test256 megabytes inputstandard input o ...

  7. [暴力] Educational Codeforces Round 71 (Rated for Div. 2) B. Square Filling (1207B)

    题目:http://codeforces.com/contest/1207/problem/B   B. Square Filling time limit per test 1 second mem ...

  8. Remainder Problem(分块) Educational Codeforces Round 71 (Rated for Div. 2)

    引用:https://blog.csdn.net/qq_41879343/article/details/100565031 下面代码写错了,注意要上面这种.查:2  800  0,下面代码就错了. ...

  9. XOR Guessing(交互题+思维)Educational Codeforces Round 71 (Rated for Div. 2)

    题意:https://codeforc.es/contest/1207/problem/E 答案guessing(0~2^14-1) 有两次机会,内次必须输出不同的100个数,每次系统会随机挑一个你给 ...

随机推荐

  1. React Docs(1)

    安装 React在codepen上提供了一个Hello,World项目事例,只需打开网站,即可尝试React.另外还提供了一个html文件的Hello,World项目,项目中引用CDN的react.j ...

  2. 生产要不要开启MySQL查询缓存

    一.前言 在当今的各种系统中,缓存是对系统性能优化的重要手段.MySQL Query Cache(MySQL查询缓存)在MySQL Server中是默认打开的,但是网上各种资料以及有经验的DBA都建议 ...

  3. 简单说 通过CSS的滤镜 实现 火焰效果

    说明 上次我们了解了一些css滤镜的基础知识, 简单说 CSS滤镜 filter属性 这次我们就来用css的滤镜实现一个 火焰的效果. 解释 要实现上面的火焰效果,我们先来了解一些必要的东西. 上次我 ...

  4. 使用veloticy-ui生成文字动画

    前言 最近要实现一个类似文字波浪线的效果,使用了velocity-ui这个动画库,第一个感觉就是使用简单,代码量少,性能优异,在此简单介绍一下使用方法,并实现一个看上去不错的动画.具体使用方法可以点击 ...

  5. 简单易懂的Servlet路径问题

    关于servlet路径,我看了一下网上别人的博客园,发现都有一个通病,讲的太专业了,又抓不住关键部分,往往看一眼就不想看第二眼.所以我特地准备了初学者所通识的servlet路径问题. 1.标识符 /j ...

  6. Python知识点 - Xpath提取某个标签,需要转换为HTML。

        # lxml转Html from lxml import etree from HTMLParser import HTMLParser def lxml_to_html(text:etree ...

  7. 4,Java中的多线程

    1,创建线程 ··· 继承Thread类:     必须覆写Thread的run方法. ··· 实现Runnable接口:     必须实现run方法,再传入到Thread(Runnable t)构造 ...

  8. springboot 整合logback

    日志包使用的是springboot内置的日志包,所以我们不许要再专门导入日志包 1.logback-spring.xml配置 <?xml version="1.0" enco ...

  9. 3DGIS与BIM集成集成技术及铁路桥梁可视化系统

    3DGIS与BIM的集成技术 3DGIS与BIM的集成技术包括2部分:一是将Revit软件生成的BIM针对3DGIS的快速无损格式转换,这种转换包括几何信息(如形状.位置等信息)和属性信息(如建筑信息 ...

  10. Redis(7)——持久化【一文了解】

    一.持久化简介 Redis 的数据 全部存储 在 内存 中,如果 突然宕机,数据就会全部丢失,因此必须有一套机制来保证 Redis 的数据不会因为故障而丢失,这种机制就是 Redis 的 持久化机制, ...