保证信息在传输过程中的安全性:

            保密通信、密钥交换、数字签名。

  RSA算法 Diffie-Hellman算法 DSA算法
保密通信 × ×
密钥交换 ×
数字签名 ×

数字签名具有抗否认、抗假冒、抗篡改伪造的特性

M----明文

Keb----B的公钥

Kdb----B的私钥

当先用私钥加密时,将相当于B对明文进行了数字签名,B不可抵赖。

RSA算法:

速度:

      1.由于都是大数计算,RSA最快的情况也比DES慢许多倍,无论是硬件还是软件实现。速度一直是RSA的缺陷。一般来说只用于少量的数据加密。

       2.RSA是被研究是最广泛的公钥算法,提出到现在已经历了二十年,经历了各种攻击的考验,逐渐为人们接受,普遍认为是目前最优秀的公钥方案之一。

执行过程:

     1.生成两个大素数p和q

     2.计算这两个素数的乘积n=p*q

     3.计算小于n并且与n互质的整数的个数,即欧拉函数φ(n)=(p-1)*(q-1)

     4.选择一个随机数e满足1<e<φ(n),并且e和φ(n)互质,即gcd(e,φ(n))==1

     5.解方程 e*d ≡1 mod φ(n),求出d

     6.保密d,p和q(销毁),公开n和e

     公钥公开:PU={e,n}

     私钥保密:PR={d,n}

RSA使用:

      加密一个报文M,发送方:

          1.获取接收方的公钥 PU={e,n}

          2.计算:C = Me mod n, where 0<=M<n

       解密密文C,接收方:

          1.用自己的私钥PR={d,n}

          2.计算:M=Cd mod n

RSA注意:

       1.RSA加密时,明文以分组的形式加密,每一个分组的比特数应该小于log2n比特,即M<n

        2.选取的素数p和q要足够大,从而乘积n足够大,在事先不知道p和q的情况下,分解n是计算上不可行的。

            如何得到足够大的随机素数?

               实际应用所采用的方法是:首先,产生一个足够大的随机数,然后,通过采用一个概率多项式时间算法来检测该随机数是否为素数(即是否具有素性)

               常用的两个素性测试算法:Solovay-Strassen和Miller-Rabin

RSA例子----密钥

        1.挑选质数:p=17 & q=11

        2.计算 n=p*q=17*11=187

        3.计算 φ(n)=(p-1)*(q-1)=16*10=160

        4.选择 e:gcd(e,160)=1;    选择  e=7

        5.求解 d:e*d≡1 mod 160 且 d<160  , d=23,显然 23*7=161=160+1

        Public key Pu={7.187}

        Private key PR={23,187}

       

        RSA 加密/解密:   M=88(注意88<187)

        加密:   C = 887 mod 187 = 11

        解密:    M = 1123 mod 187 = 88

         

        求解方程 e*d≡ 1 mod φ(n)

            当e=1001    ,    φ(n)=3837时:

             1.欧几里得算法(辗转相除法)

                     3837 = 3 * 1001 + 834

                     1001 = 1 * 834 +167

                      834 = 4 * 167 + 166

                      167 = 166 + 1

              2.回代:

                     1  = 167 - 166

                        = 167 - (834 - 4*167 )

                        = 5 * 167 -834

                        = 5 * (1001 - 834)-834

                        = 5  * 1001 - 6 * 834

                        = 5 * 1001 - 6 *(3837 - 3 * 1001)

                        =  23 * 1001 - 6 * 3837

数字签名---RSA算法的更多相关文章

  1. Java数字签名——RSA算法

    数字签名:带有密钥(公钥,私钥)的消息摘要算法. 验证数据的完整性,认证数据的来源,抗否性 OSI参考模型 私钥签名,公钥验证 签名算法:RSA,DSA,ECDSA 算法1 :RSA MD,SHA两类 ...

  2. 浅谈IM软件业务知识——非对称加密,RSA算法,数字签名,公钥,私钥

    概述 首先了解一下相关概念:RSA算法:1977年由Ron Rivest.Adi Shamirh和LenAdleman发明的.RSA就是取自他们三个人的名字. 算法基于一个数论:将两个大素数相乘很ea ...

  3. 一个基于RSA算法的Java数字签名例子

    原文地址:一个基于RSA算法的Java数字签名例子 一.前言: 网络数据安全包括数据的本身的安全性.数据的完整性(防止篡改).数据来源的不可否认性等要素.对数据采用加密算法加密可以保证数据本身的安全性 ...

  4. 跨越千年的RSA算法

    转载自http://www.matrix67.com/blog/archives/5100 数论,数学中的皇冠,最纯粹的数学.早在古希腊时代,人们就开始痴迷地研究数字,沉浸于这个几乎没有任何实用价值的 ...

  5. C# RSA 算法

    RSA公钥加密算法是1977年由Ron Rivest.Adi Shamirh和LenAdleman在(美国麻省理工学院)开发的.RSA取名来自开发他们三者的名字.RSA是目前最有影响力的公钥加密算法, ...

  6. SSH原理与运用(一)和(二):远程登录 RSA算法原理(一)和(二)

    SSH原理与运用(一)和(二):远程登录  RSA算法原理(一)和(二) http://www.ruanyifeng.com/blog/2011/12/ssh_remote_login.html ht ...

  7. 基于私钥加密公钥解密的RSA算法C#实现

    RSA算法是第一个能同时用于加密和数字签名的算法,也易于理解和操作. RSA是被研究得最广泛的公钥算法,从提出到现在已近二十年,经历了各种攻击的考验,逐渐为人们接受,普遍认为是目前最优秀的公钥方案之一 ...

  8. RSA算法详解及C语言实现

    RSA算法它是第一个既能用于数据加密也能用于数字签名的算法.它易于理解和操作,也很流行.算法的名字以发明者的名字命名:Ron Rivest, Adi Shamir 和Leonard Adleman.但 ...

  9. RSA算法python实现

    RSA算法是一种非对称加密算法,是现在广泛使用的公钥加密算法,主要应用是加密信息和数字签名.详情请看维基:http://zh.wikipedia.org/wiki/RSA%E5%8A%A0%E5%AF ...

随机推荐

  1. Input标签中属性的注意点

    readonly 只读字段,即用户不可更改,但可以通过tab切换到该字段,还可以选中复制该字段 step 输入合法的数字间隔,当step属性的值为负数或0时默认为1,可以配合max,min属性来创建合 ...

  2. Java并发编程锁系列之ReentrantLock对象总结

    Java并发编程锁系列之ReentrantLock对象总结 在Java并发编程中,根据不同维度来区分锁的话,锁可以分为十五种.ReentranckLock就是其中的多个分类. 本文主要内容:重入锁理解 ...

  3. gunicorn的作用

    gunicorn是什么: gunicorn是一种unix上被广泛使用的Python WSGI UNIX HTTP Server WSGI是什么: 先说下 WSGI 的表面意思,Web Server G ...

  4. 一些常用关键字的用法(一.static)

    17:36:26 2020-04-05 又是充实的一天,刚刚开始学习不久java的我,从面向过程的语言转变到面向对象的语言,在思想上上还是需要花费很多时间转变的.今天学习到了这几个关键字了,觉得这几个 ...

  5. js函数简单调用

    <script> //最简单的调用 //这是JavaScript DOM编程艺术(第2版)关于函数的原码 function convertToCelsius(temp) { var res ...

  6. Educational Codeforces Round 83 (Rated for Div. 2)

    A. Two Regular Polygons 题意:给你一个 正n边形,问你能否以这个 n 的其中一些顶点组成一个 m边形, 思路 :如果 n % m == 0 ,就可 收获:边均分 B. Bogo ...

  7. 判断移动端还是PC端JS

    if(/Android|webOS|iPhone|iPod|BlackBerry/i.test(navigator.userAgent)) {         // alert("手机&qu ...

  8. 【网络安全】——客户端安全(浏览器安全、XSS、CSRF、Clickjacking)

    ​ 近在学习网络安全相关的知识,于是先从业内一本系统讲Web安全的书<白帽子讲Web安全>系统学习Web安全的相关知识.在此整理书中的知识层次,不求详尽,只求自己对整个Web安全梗概有所了 ...

  9. Jmeter 压力测试笔记(2)--问题定位

    事情已经出了,是该想办法解决的时候了. 经过运维和DBA定位: 数据库读写分离中,读库延时超过了30秒,导致所有请求都压在主库.另外所有数据库都连接数都被占满,但活跃请求数量缺不多. 数据库16K的连 ...

  10. 多级分销概念 MongoDB||MySQL

    1.背景 购物软件中提供推荐注册返利机制,A->B,A->C,B->D,B->E.被邀请人只有一对一的上级,上级对下级是一对多,用户可以一直邀请用户. 2.实现方法 2.1.M ...