Description

The map of the capital of Berland can be viewed on the infinite coordinate plane. Each point with integer coordinates contains a building, and there are streets connecting every building to four neighbouring buildings. All streets are parallel to the coordinate axes.

The main school of the capital is located in (sx,sy)(sx,sy)(sx,sy). There are n students attending this school, the i-th of them lives in the house located in (xi,yi). It is possible that some students live in the same house, but no student lives in (sx,sy)(sx,sy)(sx,sy).

After classes end, each student walks from the school to his house along one of the shortest paths. So the distance the iii-th student goes from the school to his house is ∣sx−xi∣+∣sy−yi∣|s_x−x_i|+|s_y−y_i|∣sx​−xi​∣+∣sy​−yi​∣.

The Provision Department of Berland has decided to open a shawarma tent somewhere in the capital (at some point with integer coordinates). It is considered that the iii-th student will buy a shawarma if at least one of the shortest paths from the school to the iii

-th student’s house goes through the point where the shawarma tent is located. It is forbidden to place the shawarma tent at the point where the school is located, but the coordinates of the shawarma tent may coincide with the coordinates of the house of some student (or even multiple students).

You want to find the maximum possible number of students buying shawarma and the optimal location for the tent itself.

Input

The first line contains three integers nnn, sxsxsx, sy(1≤n≤200000,0≤sx,sy≤109)sy (1≤n≤200000, 0≤sx,sy≤10^9)sy(1≤n≤200000,0≤sx,sy≤109) — the number of students and the coordinates of the school, respectively.

Then nnn lines follow. The iii-th of them contains two integers xi,yi(0≤xi,yi≤109)xi, yi (0≤x_i,y_i≤10^9)xi,yi(0≤xi​,yi​≤109) — the location of the house where the iii-th student lives. Some locations of houses may coincide, but no student lives in the same location where the school is situated.

Output

The output should consist of two lines. The first of them should contain one integer ccc — the maximum number of students that will buy shawarmas at the tent.

The second line should contain two integers pxp_xpx​ and pyp_ypy​ — the coordinates where the tent should be located. If there are multiple answers, print any of them. Note that each of pxp_xpx​ and pyp_ypy​ should be not less than 000 and not greater than 10910^9109.

题意

给定原点和若干点,定义点到原点距离为∣sx−xi∣+∣sy−yi∣|s_x−x_i|+|s_y−y_i|∣sx​−xi​∣+∣sy​−yi​∣,现在要选择一个位置建造帐篷,若一个点到原点有经过这个帐篷的最短路径,那么就会产生111点贡献。问在哪里建造帐篷能获得的贡献值最大。

思路

很显然,一个点到原点的最短路径可行方案覆盖了以该点和原点为对角顶点的整个矩形。



大概就是这样的一个矩形。因此我有了一个很自然的思路:每次给这个矩形里所有值+1,最后统计答案遍历每个点即可。

打算二维树状数组搞一搞,然后发现值域过大……

正解:这个矩形的某一个顶点是确定的,即原点是确定的,那么一定只有这几种情况:

  1. 点在原点的左上方,那么建筑在原点左一格和原点上一格都可以让该点产生贡献。
  2. 点在原点的左下方,那么建筑在原点左一格和原点下一格都可以让该点产生贡献。
  3. 点在原点的右上方,那么建筑在原点右一格和原点上一格都可以让该点产生贡献。
  4. 点在原点右下方,那么建筑在原点右一格和原点下一格都可以让该点产生贡献。

    也就是说,原点上下左右四个建筑位置一定是最优的。

    归纳一下,得到:

原点左边的所有点都会对建筑在原点左一格的情况产生贡献。

原点右边的所有点都会对建筑在原点右一格的情况产生贡献。

原点上方的所有点都会对建筑在原点上一格的情况产生贡献。

原点下方的所有点都会对建筑在原点上一格的情况产生贡献。



在其他位置建筑的话,肯定都不如这四个点,可以画一下贡献区域感受一下。

Code

#include <cstdio>
using namespace std;
inline char nc()
{
static char buf[1000000],*p1 = buf,*p2 = buf;
return p1==p2&&(p2=(p1=buf)+fread(buf,1,1000000,stdin),p1==p2)?EOF:*p1++;
}
template<typename T>
void read(T &r)
{
static char c; r=0;
for(c=nc();c>'9'||c<'0';c=nc());
for(;c>='0'&&c<='9';r=(r<<1)+(r<<3)+(c^48),c=nc());
}
int n,p,q;
int l,r,top,bottom;
inline int max(const int &a,const int &b){return a>b?a:b;}
int main()
{
read(n);
read(p);
read(q);
int x,y;
for(;n;--n)
{
read(x);
read(y);
if(x < p)
++l;
else if(x > p)
++r;
if(y > q)
++top;
else if(y < q)
++bottom;
}
int maxx = max(l,max(r,max(top,bottom)));
printf("%d\n",maxx);
if(maxx == l)
printf("%d %d",p - 1,q);
else if(maxx == r)
printf("%d %d",p + 1,q);
else if(maxx == top)
printf("%d %d",p,q+1);
else
printf("%d %d",p,q-1);
return 0;
}

[Codeforces #608 div2]1271C Shawarma Tent的更多相关文章

  1. [Codeforces #608 div2]1271D Portals

    Description You play a strategic video game (yeah, we ran out of good problem legends). In this game ...

  2. [Codeforces #608 div2]1272B Blocks

    Description There are nnn blocks arranged in a row and numbered from left to right, starting from on ...

  3. [Codeforces #608 div2]1271A Suits

    Description A new delivery of clothing has arrived today to the clothing store. This delivery consis ...

  4. Codeforces #180 div2 C Parity Game

    // Codeforces #180 div2 C Parity Game // // 这个问题的意思被摄物体没有解释 // // 这个主题是如此的狠一点(对我来说,),不多说了这 // // 解决问 ...

  5. Codeforces #541 (Div2) - E. String Multiplication(动态规划)

    Problem   Codeforces #541 (Div2) - E. String Multiplication Time Limit: 2000 mSec Problem Descriptio ...

  6. Codeforces #541 (Div2) - F. Asya And Kittens(并查集+链表)

    Problem   Codeforces #541 (Div2) - F. Asya And Kittens Time Limit: 2000 mSec Problem Description Inp ...

  7. Codeforces #541 (Div2) - D. Gourmet choice(拓扑排序+并查集)

    Problem   Codeforces #541 (Div2) - D. Gourmet choice Time Limit: 2000 mSec Problem Description Input ...

  8. Codeforces #548 (Div2) - D.Steps to One(概率dp+数论)

    Problem   Codeforces #548 (Div2) - D.Steps to One Time Limit: 2000 mSec Problem Description Input Th ...

  9. 【Codeforces #312 div2 A】Lala Land and Apple Trees

    # [Codeforces #312 div2 A]Lala Land and Apple Trees 首先,此题的大意是在一条坐标轴上,有\(n\)个点,每个点的权值为\(a_{i}\),第一次从原 ...

随机推荐

  1. Maven学习笔记:Maven简介

    Maven的概念 Maven是基于项目对象模型(POM,Project Object Model),可以通过描述信息来管理项目的构建,报告和文档的软件管理工具 Maven除了以程序构建能力为特色之外, ...

  2. IoT协议LwM2M MQTT与CoAP

    IoT协议LwM2M MQTT与CoAP 一.MQTT 1.概述: MQTT(Message Queuing Telemetry Transport,消息队列遥测传输)是IBM开发的一个即时通讯协议, ...

  3. sql 中u.*什么意思

    i.*  i是一个表的别名,i.*是这个表的所有列,比如 select i.* from customer i; 相当于 select id,name,password from customer;

  4. node vue 项目git 管理

    push 上传到云的时候,依赖包及相关文件是不上传上去的, 所以每次克隆到本地后,node 项目运行前须要 npm install 安装对应依赖 vue 项目编译前也须要  npm install,安 ...

  5. vjudge Trailing Zeroes (III) (二分答案 && 数论)

    嗯... 题目链接:https://vjudge.net/contest/318956#problem/E 这道题是二分答案+数论,但首先是数论,否则你不知如何二分... 首先关于一个阶乘的结果最后会 ...

  6. Linux文件系统与日志!

    1.inode 和 block 概述 文件储存在硬盘上,硬盘的最小储存单位叫“扇区”(sector),每个扇区储存 512 字节. 操作系统读取硬盘的时候,不会一个个扇区的读取,这样效率太低,而是一次 ...

  7. 如何查看NXP产品的供货计划?

    大的半导体厂商一般会提供每个产品的生命周期计划,NXP的工业级IC一般供货10年,汽车级是15年,具体的时间可以在官网查询得到. 首先,打开NXP官网链接 产品长期供货计划,可以看到以下页面 接着,筛 ...

  8. TCP通讯代码

    服务端代码: import socket server_socket=socket.socket(socket.AF_INET,socket.SOCK_STREAM) # 使用固定端口 server_ ...

  9. c# 分页 PaginatedList<TResult>

    using System; using System.Collections.Generic; using System.Linq; namespace Microestc.PaginatedList ...

  10. selenium webdriver 常用方法

    /** * 判断元素是否存在 * * @param driver * @param by * @return */ public static boolean isElementPresent(Web ...