原文地址:http://www.bugingcode.com/blog/ChatterBot_Dialogue_process.html

创建机器人

部署机器人的各种属性,根据前面的章节里聊天机器人的各种属性,对聊天机器人进行相应的配置,创建一个符合自己的机器人。

bot = ChatBot(
'Default Response Example Bot',
storage_adapter='chatterbot.storage.SQLStorageAdapter',
logic_adapters=[
{
'import_path': 'chatterbot.logic.BestMatch'
},
{
'import_path': 'chatterbot.logic.LowConfidenceAdapter',
'threshold': 0.65,
'default_response': 'I am sorry, but I do not understand.'
}
],
trainer='chatterbot.trainers.ListTrainer'
)

logic_adapters

logic_adapters:用来设置所选择的算法,这里选择的是chatterbot.logic.BestMatch,也就是最匹配方式,从训练的对话中找到最相识的语句,根据对话,提供回答。

trainer

trainer:选择的是chatterbot.trainers.ListTrainer

在trainer中,决定选择哪种构造方式来创建上下文的关系。

def train(self, conversation):
"""
Train the chat bot based on the provided list of
statements that represents a single conversation.
"""
previous_statement_text = None for conversation_count, text in enumerate(conversation):
print_progress_bar("List Trainer", conversation_count + 1, len(conversation)) statement = self.get_or_create(text) if previous_statement_text:
statement.add_response(
Response(previous_statement_text)
) previous_statement_text = statement.text
self.storage.update(statement)

在ListTrainer中,用上下句来构建一个statement ,statement相当于存储了一个上下对话的关系,在查找的时候,先找到最合适的上文,下文就是答案了。这就是一个训练的过程,训练的这一过程,主要是在构建statement,并把statement放到storage中。

storage_adapter

storage_adapter有几种可选的方案chatterbot.storage.SQLStorageAdapter,MongoDatabaseAdapter,存储之前训练的statement,把statement存储在数据库中,默认的数据库选择的是本地的sqlite3。

训练机器人

把语料准备好,就聊天机器人进行训练,语料的来源比较重要,像之前的小黄鸭语料的来源,主要是来源于众包,用户会交小黄鸭怎么去回答问题,语料是重要的一种选择,一个语料的质量决定了聊天机器人的可玩性。

训练的过程,就是一个建立statement并存储的过程,代码在ListTrainer中都有详细的体现。

bot.train([
'How can I help you?',
'I want to create a chat bot',
'Have you read the documentation?',
'No, I have not',
'This should help get you started: http://chatterbot.rtfd.org/en/latest/quickstart.html'
])

产生答案

聊天机器人主要的过程是产生答案的过程,而答案的选择最关键的就是算法的实现,之前有介绍过,可玩性比较高的聊天机器人必须拥有不同的算法,对不同的聊天内容给出不一样的答案,根据输入选择最合适的算法,产生最好的答案。在机器人对话中,最常见的问题是一些生活的问题,比如,天气,时间,笑话等,根据问题,选择最匹配的算法,给出精彩的答案。

response = bot.get_response('How do I make an omelette?')

get_response的过程

采用的是ChatBot的方法,一开始先得到输入,并对数据进行过滤,在根据输入数据选择算法,得出答案。

def get_response(self, input_item, session_id=None):
"""
Return the bot's response based on the input. :param input_item: An input value.
:returns: A response to the input.
:rtype: Statement
"""
if not session_id:
session_id = str(self.default_session.uuid) input_statement = self.input.process_input_statement(input_item) # Preprocess the input statement
for preprocessor in self.preprocessors:
input_statement = preprocessor(self, input_statement) statement, response = self.generate_response(input_statement, session_id) # Learn that the user's input was a valid response to the chat bot's previous output
previous_statement = self.conversation_sessions.get(
session_id
).conversation.get_last_response_statement()
self.learn_response(statement, previous_statement) self.conversation_sessions.update(session_id, (statement, response, )) # Process the response output with the output adapter
return self.output.process_response(response, session_id)

算法是如何进行选择的呢?

在multi_adapter.py 算法选择中,遍历了所有我们已经选择的算法,算法通过 can_process 进行选择,对输入生成的statement 进行匹配,并通过confidence来进行评分,而应该还可以进行扩展,通过不同的得分,来选择算法,最佳匹配。

def process(self, statement):
"""
Returns the output of a selection of logic adapters
for a given input statement. :param statement: The input statement to be processed.
"""
results = []
result = None
max_confidence = -1 for adapter in self.get_adapters():
if adapter.can_process(statement): output = adapter.process(statement) if type(output) == tuple:
warnings.warn(
'{} returned two values when just a Statement object was expected. '
'You should update your logic adapter to return just the Statement object. '
'Make sure that statement.confidence is being set.'.format(adapter.class_name),
DeprecationWarning
)
output = output[1] results.append((output.confidence, output, )) self.logger.info(
'{} selected "{}" as a response with a confidence of {}'.format(
adapter.class_name, output.text, output.confidence
)
) if output.confidence > max_confidence:
result = output
max_confidence = output.confidence
else:
self.logger.info(
'Not processing the statement using {}'.format(adapter.class_name)
) # If multiple adapters agree on the same statement,
# then that statement is more likely to be the correct response
if len(results) >= 3:
statements = [s[1] for s in results]
count = Counter(statements)
most_common = count.most_common()
if most_common[0][1] > 1:
result = most_common[0][0]
max_confidence = self.get_greatest_confidence(result, results) result.confidence = max_confidence
return result

ChatterBot的架构和流程基本清楚以后,就是对ChatterBot的扩展,一个好的ChatterBot聊天机器人,还有很多需要完成的地方,比如多轮对话,

我:天气如何?

机器人:你在位置在那里?

我:厦门

机器人:多云转晴,32摄氏度

转载请标明来之:http://www.bugingcode.com/

更多教程:阿猫学编程

ChatterBot聊天机器人呢结构(五):ChatterBot对话流程的更多相关文章

  1. 【自然语言处理篇】--Chatterbot聊天机器人

    一.前述 ChatterBot是一个基于机器学习的聊天机器人引擎,构建在python上,主要特点是可以自可以从已有的对话中进行学(jiyi)习(pipei). 二.具体 1.安装 是的,安装超级简单, ...

  2. vue-miniQQ——基于Vue2实现的仿手机QQ单页面应用(接入了聊天机器人,能够进行正常对话)

    使用Vue2进行的仿手机QQ的webapp的制作,作品由个人独立开发,源码中进行了详细的注释. 由于自己也是初学Vue2,所以注释写的不够精简,请见谅. 项目地址 https://github.com ...

  3. 深度学习项目——基于循环神经网络(RNN)的智能聊天机器人系统

    基于循环神经网络(RNN)的智能聊天机器人系统 本设计研究智能聊天机器人技术,基于循环神经网络构建了一套智能聊天机器人系统,系统将由以下几个部分构成:制作问答聊天数据集.RNN神经网络搭建.seq2s ...

  4. NLP(十五) 聊天机器人

    对话引擎 1.了解目标用户 2.理解用于沟通得语言 3.了解用户的意图 4.应答用户,并给出进一步线索 NLTK中的引擎 eliza,iesha,rude,suntsu,zen import nltk ...

  5. 计算机网络课设之基于UDP协议的简易聊天机器人

    前言:2017年6月份计算机网络的课设任务,在同学的帮助和自学下基本搞懂了,基于UDP协议的基本聊天的实现方法.实现起来很简单,原理也很简单,主要是由于老师必须要求使用C语言来写,所以特别麻烦,而且C ...

  6. AI中台——智能聊天机器人平台的架构与应用(分享实录)

    内容来源:宜信技术学院第3期技术沙龙-线上直播|AI中台——智能聊天机器人平台 主讲人:宜信科技中心AI中台团队负责人王东 导读:随着“中台”战略的提出,目前宜信中台建设在思想理念及架构设计上都已经取 ...

  7. 【Python撩妹合集】微信聊天机器人,推送天气早报、睡前故事、精美图片分享

    福利时间,福利时间,福利时间 如果你还在为不知道怎么撩妹而烦恼,不知道怎么勾搭小仙女而困惑,又或者不知道怎么讨女朋友欢心而长吁短叹. 那么不要犹豫徘徊,往下看.接下来我会分享怎么使用 Python 实 ...

  8. 智能聊天机器人——基于RASA搭建

    前言: 最近了解了一下Rasa,阅读了一下官方文档,初步搭建了一个聊天机器人. 官方文档:https://rasa.com/docs/ 搭建的chatbot项目地址: https://github.c ...

  9. 基于PaddlePaddle的语义匹配模型DAM,让聊天机器人实现完美回复 |

    来源商业新知网,原标题:让聊天机器人完美回复 | 基于PaddlePaddle的语义匹配模型DAM 语义匹配 语义匹配是NLP的一项重要应用.无论是问答系统.对话系统还是智能客服,都可以认为是问题和回 ...

随机推荐

  1. python all()函数

    1.描述all() 函数——用于判断给定的可迭代参数 iterable 中的所有元素是否都为TRUE,如果是返回 True,否则返回 False.元素除了是 0.空.FALSE 外都算 TRUE.2. ...

  2. Data总结

    getTime() 方法可返回距 1970 年 1 月 1 日之间的毫秒数 var d = new Date(); var n = d.getTime(); //一长串数字

  3. Maven--仓库的分类

    对于 Maven 仓库来说,仓库只分为两类:本地仓库和远程仓库. 当 Maven 根据坐标寻找构件的时候,它首先会查看本地仓库,如果本地仓库存在此构件,则直接使用:如果本地仓库不存在此构件,或者需要查 ...

  4. document.write的时机

    document.write第一次加载进入页面的时候会紧跟文档,写入内容.但是如果在文档已经加载完毕之后,再通过点击的方式调用函数的话会直接把整个文档覆盖掉.

  5. 进程同步multiprocess.Lock

    进程同步multiprocess.Lock 我们千方百计实现了程序的异步,让多个任务可以同时在几个进程中并发处理,他们之间的运行没有顺序,一旦开启也不受我们控制.尽管并发编程让我们能更加充分的利用IO ...

  6. linux复制指定文件

    find /somedir -type f|xargs -I {} cp {} . find /somedir -name "*.txt"|xargs -I {} cp {} .

  7. 使用java读取解析txt文本数据,管理简单的数据

    在实际开发中会经常碰到使用编程语言读取文本文件的内容,这内容可以是各种各样的一下本人写出我自己做的一个读取文本文件的例子,文件中存储的是我的个人网站 www.yzcopen.com 导航栏目因为懒得使 ...

  8. pip 通过pqi切换源到国内镜像

    pip install pqipqi lspqi use aliyun # pqi use tuna   清华

  9. 2018-1 WebStorm最新版本破解激活方法

    在激活页面选择License Server,输入:http://idea.codebeta.cn,点击Activate即可激活. 如果失效用这个:  http://idea.ibdyr.com

  10. day12-模块导入

    # 一.import import demo # in demo.py -- 导入demo模块,执行里面的print语句. print(demo.money) # 8000000 -- 打印demo的 ...