poj-----(2528)Mayor's posters(线段树区间更新及区间统计+离散化)
Time Limit: 1000MS | Memory Limit: 65536K | |
Total Submissions: 43507 | Accepted: 12693 |
Description
- Every candidate can place exactly one poster on the wall.
- All posters are of the same height equal to the height of
the wall; the width of a poster can be any integer number of bytes (byte
is the unit of length in Bytetown). - The wall is divided into segments and the width of each segment is one byte.
- Each poster must completely cover a contiguous number of wall segments.
They have built a wall 10000000 bytes long (such that there is
enough place for all candidates). When the electoral campaign was
restarted, the candidates were placing their posters on the wall and
their posters differed widely in width. Moreover, the candidates started
placing their posters on wall segments already occupied by other
posters. Everyone in Bytetown was curious whose posters will be visible
(entirely or in part) on the last day before elections.
Your task is to find the number of visible posters when all the
posters are placed given the information about posters' size, their
place and order of placement on the electoral wall.
Input
first line of input contains a number c giving the number of cases that
follow. The first line of data for a single case contains number 1 <=
n <= 10000. The subsequent n lines describe the posters in the order
in which they were placed. The i-th line among the n lines contains two
integer numbers li and ri which are the number of the wall
segment occupied by the left end and the right end of the i-th poster,
respectively. We know that for each 1 <= i <= n, 1 <= li <= ri <= 10000000. After the i-th poster is placed, it entirely covers all wall segments numbered li, li+1 ,... , ri.
Output
The picture below illustrates the case of the sample input.
Sample Input
- 1
- 5
- 1 4
- 2 6
- 8 10
- 3 4
- 7 10
Sample Output
- 4
Source
关于区间离散的一些知识:
通俗点说,离散化就是压缩区间,使原有的长区间映射到新的短区间,但是区间压缩前后的覆盖关系不变。举个例子:
有一条1到10的数轴(长度为9),给定4个区间[2,4] [3,6] [8,10] [6,9],覆盖关系就是后者覆盖前者,每个区间染色依次为 1 2 3 4。
现在我们抽取这4个区间的8个端点,2 4 3 6 8 10 6 9
然后删除相同的端点,这里相同的端点为6,则剩下2 4 3 6 8 10 9
对其升序排序,得2 3 4 6 8 9 10
然后建立映射
2 3 4 6 8 9 10
↓ ↓ ↓ ↓ ↓ ↓ ↓
1 2 3 4 5 6 7
那么新的4个区间为 [1,3] [2,4] [5,7] [4,6],覆盖关系没有被改变。新数轴为1到7,即原数轴的长度从9压缩到6,显然构造[1,7]的线段树比构造[1,10]的线段树更省空间,搜索也更快,但是求解的结果却是一致的。
离散化时有一点必须要注意的,就是必须先剔除相同端点后再排序,这样可以减少参与排序元素的个数,节省时间。
代码:
- /*poj 2528 线段树+离散化*/
- //#define LOCAL
- #include<stdio.h>
- #include<string.h>
- #include<stdlib.h>
- #include<iostream>
- #include<algorithm>
- #define MAXN 10000010
- #define maxn 10005
- using namespace std;
- struct node
- {
- int st;
- int en;
- }ss[maxn];
- int lis[maxn<<]; //离散化素组
- int hash[MAXN]; //运用哈希表
- int ans;
- int vis[maxn];
- struct post
- {
- int lef,rig;
- int mid(){
- return lef+((rig-lef)>>);
- }
- int id; //颜色种类
- int type; //用于延迟
- }poster[maxn<<];
- void build_seg(int left,int right,int pos)
- {
- poster[pos].lef=left;
- poster[pos].rig=right;
- poster[pos].id=;
- poster[pos].type=;
- if(left==right) return ;
- int mid=poster[pos].mid();
- build_seg(left,mid,pos<<);
- build_seg(mid+,right,pos<<|);
- }
- void Update(int left,int right,int pos,int id)
- {
- if(poster[pos].lef>=left&&poster[pos].rig<=right)
- {
- poster[pos].id=id;
- poster[pos].type=id;
- return ;
- }
- if(poster[pos].type&&poster[pos].lef!=poster[pos].rig)
- {
- //向下更新一次
- poster[pos<<].type=poster[pos<<|].type=poster[pos].type;
- poster[pos<<].id=poster[pos<<|].id=poster[pos].id;
- poster[pos].type=;
- }
- int mid=poster[pos].mid();
- if(mid>=left)
- Update(left,right,pos<<,id);
- if(mid<right)
- Update(left,right,pos<<|,id);
- if(poster[pos].lef!=poster[pos].rig)
- {
- if(poster[pos<<].id==poster[pos<<|].id)
- poster[pos].id=poster[pos<<].id;
- else
- poster[pos].id=; //说明有多种可能,需要再向下查询统计
- }
- }
- void query(int left,int right,int pos) //进行统计
- {
- if(poster[pos].lef<left||poster[pos].rig>right)
- return ;
- if(poster[pos].id)
- {
- if(!vis[poster[pos].id])
- {
- ans++;
- vis[poster[pos].id]=true;
- }
- return;
- }
- if(poster[pos].lef!=poster[pos].rig){
- query(left,right,pos<<);
- query(left,right,pos<<|);
- }
- }
- int main()
- {
- #ifdef LOCAL
- freopen("test.in","r",stdin);
- #endif
- int cas,n;
- scanf("%d",&cas);
- while(cas--)
- {
- scanf("%d",&n);
- int k=;
- memset(hash,,sizeof(hash));
- memset(vis,,sizeof(vis)); //初始化为0表示都没有访问过
- for(int i=;i<n;i++)
- {
- scanf("%d %d",&ss[i].st,&ss[i].en);
- lis[k++]=ss[i].st;
- lis[k++]=ss[i].en;
- }
- sort(lis,lis+k); //升序
- int j=;
- for(int i=;i<k;i++)
- {
- if(hash[lis[i]]==)
- hash[lis[i]]=++j; //编号从1起
- }
- build_seg(,j,);
- for(int i=;i<n;i++){
- Update(hash[ss[i].st],hash[ss[i].en],,i+);
- }
- ans=;
- query(,j,);
- printf("%d\n",ans);
- }
- return ;
- }
poj-----(2528)Mayor's posters(线段树区间更新及区间统计+离散化)的更多相关文章
- POJ.2528 Mayor's posters (线段树 区间更新 区间查询 离散化)
POJ.2528 Mayor's posters (线段树 区间更新 区间查询 离散化) 题意分析 贴海报,新的海报能覆盖在旧的海报上面,最后贴完了,求问能看见几张海报. 最多有10000张海报,海报 ...
- poj 2528 Mayor's posters 线段树+离散化技巧
poj 2528 Mayor's posters 题目链接: http://poj.org/problem?id=2528 思路: 线段树+离散化技巧(这里的离散化需要注意一下啊,题目数据弱看不出来) ...
- poj 2528 Mayor's posters 线段树区间更新
Mayor's posters Time Limit: 1 Sec Memory Limit: 256 MB 题目连接 http://poj.org/problem?id=2528 Descript ...
- POJ 2528 Mayor's posters (线段树区间更新+离散化)
题目链接:http://poj.org/problem?id=2528 给你n块木板,每块木板有起始和终点,按顺序放置,问最终能看到几块木板. 很明显的线段树区间更新问题,每次放置木板就更新区间里的值 ...
- POJ 2528 Mayor's posters(线段树,区间覆盖,单点查询)
Mayor's posters Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 45703 Accepted: 13239 ...
- POJ 2528 Mayor's posters(线段树+离散化)
Mayor's posters 转载自:http://blog.csdn.net/winddreams/article/details/38443761 [题目链接]Mayor's posters [ ...
- poj 2528 Mayor's posters 线段树+离散化 || hihocode #1079 离散化
Mayor's posters Description The citizens of Bytetown, AB, could not stand that the candidates in the ...
- poj 2528 Mayor's posters(线段树)
题目:http://poj.org/problem?id=2528 题意:有一面墙,被等分为1QW份,一份的宽度为一个单位宽度.现在往墙上贴N张海报,每张海报的宽度是任意的, 但是必定是单位宽度的整数 ...
- POJ 2528 Mayor's posters (线段树)
题目链接:http://poj.org/problem?id=2528 题目大意:有一个很上的面板, 往上面贴海报, 问最后最多有多少个海报没有被完全覆盖 解题思路:将贴海报倒着想, 对于每一张海报只 ...
- POJ 2528 Mayor's posters (线段树+离散化)
Mayor's posters Time Limit: 1000MS Memory Limit: 65536K Total Submissions:75394 Accepted: 21747 ...
随机推荐
- block 实现原理详解(一)
对于大多数人来讲,block内部到底是怎样实现的呢?我们可以借助clang将其编译成为c++的代码,就可以看出,block到底是什么东西, 先来看这样一个问题, <!-- lang: cpp - ...
- 判断浏览器是否为IE内核的最简单的方法
没啥说的,直接贴代码,算是ie hack了. if (!+[1,]) { alert('is ie'); }
- 自定义类型转换器converter
作用:目前将日期转换成string,将string转换成我想要的类型 0509课件里讲 一.数据类型转换在web应用程序中,数据存在两个方向上的转换:1.当提交表单时 表单数据以字符串的形式提交 ...
- Java编程思想读书笔记
声明:原创作品,转载时请注明文章来自SAP师太技术博客( 博/客/园www.cnblogs.com):www.cnblogs.com/jiangzhengjun,并以超链接形式标明文章原始出处,否则将 ...
- HDU1518 Square(DFS)
Square Time Limit: 10000/5000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others) Total Su ...
- NOJ 1063 生活的烦恼
描述 生活的暑假刚集训开始,他要决心学好字典树,二叉树,线段树和各种树,但生活在OJ上刷题的时候就遇到了一个特别烦恼的问题.那当然就是他最喜欢的二二叉树咯!题目是这样的:给你一颗非空的二叉树,然后再给 ...
- iOS - OC NSRange 范围
前言 结构体,这个结构体用来表示事物的一个范围,通常是字符串里的字符范围或者集合里的元素范围. typedef struct _NSRange { NSUInteger location; // 表示 ...
- jquery+ajax(用ajax.dll)实现无刷新分页
利用ajax.dll那种方式的无刷新,在这就不说了,新朋友可以看下我的另一片文件http://www.cnblogs.com/dachuang/p/3654632.html 首先,这里用的是jquer ...
- (一)mtg3000常见操作
一.查看MTG3000主控板IP地址: 重启设备后一直跑到shell,用户名和密码都输入admin,然后输入en进入命令行界面,输入sh int可查看设备IP等信息. 2.升级app.web程序
- java中compareTo和compare方法之比较
这两个方法经常搞混淆,现对其进行总结以加深记忆. compareTo(Object o)方法是java.lang.Comparable接口中的方法,当需要对某个类的对象进行排序时,该类需要实现Comp ...