题目链接:

http://acm.hdu.edu.cn/showproblem.php?pid=4497

解题思路:将满足条件的一组x,z,y都除以G,得到x‘,y',z',满足条件gcd(x',y',x') = 1,同时lcm(x',y',x') = G/L.

特判,当G%L != 0 时,无解。

然后素数分解G/L,假设G/L = p1^t1 * p2^t2 *````* pn^tn。

满足上面条件的x,y,z一定为这样的形式。

x' = p1^i1 * p2^i2 *```* pn^in.

y' = p1^j1 * p2^j2 * ```*pn^jn.

z' = p1^k1 * p2^k2 * ```*pn^kn.

为了满足上面的条件,对于p1,一定有max(i1,j1,k1) = t1.min(i1,j1,k1) =0;则当选定第一个数为0,第二个数为t1时,第三个数可以为0-t1,又由于有顺序的,只有

(0,t1,t1) 和(0,t1,0)这两种情形根据顺序只能产生四种结果,其他的由于三个数都不一样,一定能产生6种,所以最后产生了6*(t1-1)+3*2 = 6*t1种,根据乘法原理以及关于素数分解的唯一性,反过来,素数组合必然也是唯一的数,一共有6*t1 * 6*t2 *`````*6*tn种选法。

另一种思考:容斥原理,对于p1,一共有(t1+1)^3种,但是没有最高位t1的选法是不合法的,减去,一共有t1^3种选法不合法,没有最低位0的选法是不合法的,也是t1^3,发现多减了,所以加上多减的既没有最高位也没有最低位的(t1-1)^3,通过化简得6*t1`````

贴代码:

 #include<cstdio>
#include<cmath>
#define N 100005
int a[N],b[N];
void factor(int n,int &tot)
{
int temp,i;
temp =(int)(sqrt(n) +);
tot =-;
for(int i=; i <= temp; ++i)
{
if(n%i == )
{
a[++tot] = i;
b[tot] = ;
while(n%i == )
{
++b[tot];
n /= i;
}
}
}
if(n != )
{
a[++tot] = n;
b[tot] = ;
}
}
int main()
{
// freopen("in.txt","r",stdin);
int t,G,L;
scanf("%d",&t);
while(t--)
{
scanf("%d%d",&G,&L);
if(L%G != )
{
printf("0\n");
continue;
}
L = L/G;
int tot;
factor(L,tot);
long long int ans =;
for(int i=; i<=tot; ++i) ans *= (*b[i]);
printf("%I64d\n",ans);
}
return ;
}

HDU 4497 数论+组合数学的更多相关文章

  1. GCD and LCM HDU 4497 数论

    GCD and LCM HDU 4497 数论 题意 给你三个数x,y,z的最大公约数G和最小公倍数L,问你三个数字一共有几种可能.注意123和321算两种情况. 解题思路 L代表LCM,G代表GCD ...

  2. HDU 4497 GCD and LCM (数论)

    题意:三个数x, y, z. 给出最大公倍数g和最小公约数l.求满足条件的x,y,z有多少组. 题解:设n=g/l n=p1^n1*p2^n2...pn^nk (分解质因数 那么x = p1^x1 * ...

  3. 数论 - 组合数学 + 素数分解 --- hdu 2284 : Solve the puzzle, Save the world!

    Solve the puzzle, Save the world! Problem Description In the popular TV series Heroes, there is a ta ...

  4. HDU 4497 GCD and LCM(数论+容斥原理)

    GCD and LCM Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65535/65535 K (Java/Others)Total ...

  5. 数论——算数基本定理 - HDU 4497 GCD and LCM

    GCD and LCM Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65535/65535 K (Java/Others)Total ...

  6. hdu 4497 GCD and LCM 数学

    GCD and LCM Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://acm.hdu.edu.cn/showproblem.php?pid=4 ...

  7. HDU 4497 GCD and LCM(分解质因子+排列组合)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4497 题意:已知GCD(x, y, z) = G,LCM(x, y, z) = L.告诉你G.L,求满 ...

  8. HDU 4497 GCD and LCM (分解质因数)

    链接 :  http://acm.hdu.edu.cn/showproblem.php?pid=4497 假设G不是L的约数 就不可能找到三个数. L的全部素因子一定包括G的全部素因子 而且次方数 ...

  9. hdu 4542 数论 + 约数个数相关 腾讯编程马拉松复赛

    题目:http://acm.hdu.edu.cn/showproblem.php?pid=4542 小明系列故事--未知剩余系 Time Limit: 500/200 MS (Java/Others) ...

随机推荐

  1. C# Lodop实现打印

    项目的Debug文件夹下有个template文件夹,里面有用到的js.自己建的要打印的网页和用到的背景图 1.打印方法: class print { public void printzb(strin ...

  2. digitalocean

    sudo apt-get install sshifconfigssh 198.211.102.203sudo adduser uernameubuntu装配SSH,支持开启sftp服务 sftp 1 ...

  3. form v

    <form name="example_form" action="http://google.com" method="POST"& ...

  4. JAVA中StringBuffer类常用方法详解

    String是不变类,用String修改字符串会新建一个String对象,如果频繁的修改,将会产生很多的String对象,开销很大.因此java提供了一个StringBuffer类,这个类在修改字符串 ...

  5. SeGue 多控制器跨界面传递数据原理

    多控制器跨界面传递数据原理

  6. python中的namespace

    python中的名称空间是名称(标识符)到对象的映射. 具体来说,python为模块.函数.类.对象保存一个字典(__dict__),里面就是重名称到对象的映射. 可以参看下面python程序的输出: ...

  7. IOS @2X.png

    [UIImage imageNamed:@"xxx.png"] 或者xib里iPhone4会自动找*@2x.png initWithContentOfFile:pathToImag ...

  8. BZOJ 3782 上学路线

    首先这个题需要dp.dp[i]=C(x[i]+y[i],x[i])-Σdp[j]*C(x[i]-x[j]+y[i]-y[j],x[i]-x[j])(x[i]>=x[j],y[i]>=y[j ...

  9. 基于HTTP Live Streaming(HLS) 搭建在线点播系统

    1. 为何要使用HTTP Live Streaming 可以参考wikipedia HTTP Live Streaming(缩写是 HLS)是一个由苹果公司提出的基于HTTP的流媒体 网络传输协议.是 ...

  10. codeforces #round363 div2.C-Vacations (DP)

    题目链接:http://codeforces.com/contest/699/problem/C dp[i][j]表示第i天做事情j所得到最小的假期,j=0,1,2. #include<bits ...