题目链接:http://61.187.179.132/JudgeOnline/problem.php?id=2433

题意:若干个矩形排成一排(同一个x之上最多有一个矩形),矩形i和i+1相邻。给定两点S和T,两点均在矩形内。求S到T的最短路径。只能在矩形内部走。

思路:首先,S到T若有转弯,必定是在矩形 的顶点处转弯。因此,只要建立任意两可达顶点(包含S和T)之间距离求最短路即可。若暴力枚举任意两点再判是否可达复杂度O(n^3)。优化。枚举起点 a,从左向右扫遍矩形,利用叉积维护关于该点a的上下界,在该范围之内的点均可达。

struct point
{
    int x,y;

    point(){}
    point(int _x,int _y)
    {
        x=_x;
        y=_y;
    }

    void get()
    {
        RD(x,y);
    }

    point operator-(point a)
    {
        return point(x-a.x,y-a.y);
    }

    i64 operator*(point a)
    {
        return (i64)x*a.y-(i64)y*a.x;
    }

    double len()
    {
        return sqrt(1.0*x*x+1.0*y*y);
    }
};

struct node
{
    point a,b,c,d;

    void get()
    {
        int x1,y1,x2,y2;
        RD(x1,y1); RD(x2,y2);
        a=point(x1,y1);
        b=point(x1,y2);
        c=point(x2,y1);
        d=point(x2,y2);
    }

    int contain(point p)
    {
        return a.x<=p.x&&p.x<=c.x&&a.y<=p.y&&p.y<=b.y;
    }
};

double f[N],v,ans;
node a[N];
point S,T;
int n;

double dis(point a,point b)
{
    a=a-b;
    return a.len();
}

i64 cross(point a,point b,point c)
{
    return (b-a)*(c-a);
}

int isCross(point a,point b,point c,point d)
{
    if(b.x<a.x) return 0;
    return cross(a,c,b)<=0&&cross(a,d,b)>=0;
}

void update(point S,int now,double p)
{
    if(p>=dinf) return;
    point up=point(S.x,S.y+1);
    point down=point(S.x,S.y-1);
    point l,r;
    int i;
    for(i=now;i<n;i++)
    {
        if(isCross(S,a[i].a,up,down)) f[i*4]=min(f[i*4],p+dis(S,a[i].a));
        if(isCross(S,a[i].b,up,down)) f[i*4+1]=min(f[i*4+1],p+dis(S,a[i].b));
        if(isCross(S,a[i].c,up,down)) f[i*4+2]=min(f[i*4+2],p+dis(S,a[i].c));
        if(isCross(S,a[i].d,up,down)) f[i*4+3]=min(f[i*4+3],p+dis(S,a[i].d));
        if(a[i].contain(T)&&isCross(S,T,up,down)) ans=min(ans,p+dis(S,T));
        if(i+1<n)
        {
            l=point(a[i].c.x,max(a[i].c.y,a[i+1].a.y));
            r=point(a[i].d.x,min(a[i].d.y,a[i+1].b.y));
            if(a[i].c.x==S.x)
            {
                if(l.y>S.y||S.y>r.y)
                {
                    f[(i+1)*4]=min(f[(i+1)*4],p+dis(S,a[i+1].a));
                    f[(i+1)*4+1]=min(f[(i+1)*4+1],p+dis(S,a[i+1].b));
                    return;
                }
            }
            else
            {
                if(cross(S,down,l)>0) down=l;
                if(cross(S,up,r)<0) up=r;
                if(cross(S,up,down)>0) return;
            }
        }
    }
}

int main()
{
    RD(n);
    int i;
    FOR0(i,n) a[i].get();
    S.get(); T.get();
    RD(v);
    if(S.x>T.x) swap(S,T);
    FOR0(i,4*n) f[i]=dinf;
    ans=dinf;
    FOR0(i,n)
    {
        if(a[i].contain(S)) update(S,i,0);
        update(a[i].a,i,f[i*4]);
        update(a[i].b,i,f[i*4+1]);
        update(a[i].c,i,f[i*4+2]);
        update(a[i].d,i,f[i*4+3]);
    }
    PR(ans/v);
}

BZOJ 2433 智能车比赛(计算几何+最短路)的更多相关文章

  1. [NOI2011]智能车比赛 (计算几何 DAG)

    /* 可以发现, 最优路径上的所有拐点, 基本上都满足一定的性质, 也就是说是在矩形上的拐角处 所以我们可以把他们提出来, 单独判断即可 由于我们提出来的不超过2n + 2个点, 我们将其按照x坐标排 ...

  2. 2433: [Noi2011]智能车比赛 - BZOJ

    Description 新一届智能车大赛在JL大学开始啦!比赛赛道可以看作是由n个矩形区域拼接而成(如下图所示),每个矩形的边都平行于坐标轴,第i个矩形区域的左下角和右上角坐标分别为(xi,1,yi, ...

  3. Noi2011 : 智能车比赛

    假设S在T左边,那么只能往右或者上下走 f[i]表示S到i点的最短路 f[i]=min(f[j]+dis(i,j)(i能看到j)) 判断i能看到j就维护一个上凸壳和一个下凸壳 时间复杂度$O(n^2) ...

  4. [bzoj2433][Noi2011]智能车比赛

    [题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=2433 http://221.192.240.123:8586/JudgeOnline/ ...

  5. 【[NOI2011]智能车比赛】(建图+spfa+坑爹精度)

    过了这题我就想说一声艹,跟这个题死磕了将近6个小时,终于是把这个题死磕出来了.首先看到这个题的第一反应,和当初做过的一个房间最短路比较相似,然后考虑像那个题那样建边,然后跑最短路.(具体建边方法请参考 ...

  6. 【LOJ】#2443. 「NOI2011」智能车比赛

    题解 显然是个\(n^2\)的dp 我们要找每个点不穿过非赛道区域能到达哪些区域的交点 可以通过控制两条向量负责最靠下的上边界,和最靠上的下边界,检查当前点在不在这两条向量之间即可,对于每个点可以\( ...

  7. 智能车学习(十五)——K60野火2013版例程

    一.中断函数注册方法: 1.格式: 配置某个功能的中断 注册中断函数 开启中断 2.一个例子 pit_init_ms(PIT0,);//定时中断初始化 set_vector_handler(PIT0_ ...

  8. K60平台智能车开发工作随手记

    (图片仅为示例,并不一定固定为这种造型) 第十二届全国大学生智能汽车竞赛有一个分项是光电四轮车的竞速(任务A),Seven她们组采购到的配件使用了freescale Crotex-M4内核的CPU,T ...

  9. 【sky第二期--PID算法】--【智能车论坛】

    [sky第二期--PID算法] 想学PID的可以来[智能车论坛]这里有我发布的资料http://bbs.tekbots.eefocus.com/forum.php?mod=viewthread& ...

随机推荐

  1. EBS 密码相关

    SELECT usr.user_name, apps.cux_fnd_web_sec.decrypt ((SELECT (SELECT apps.cux_fnd_web_sec.decrypt (fn ...

  2. cactive信号

    AXI中C-channel的cactive信号并不仅仅应用在CSYSREQ,CSYSACK交互中. CSYSREQ和CSYSACK信号都在低电平表示lower power的请求和应答有效. cacti ...

  3. Swift常量和变量

    常量和变量由一个特定名称来表示,如maxNumber 或者 message.常量所指向的是一个特定类型的值, 如数字10或者字符”hello”.变量的值可以根据需要不断修改,而常量的值是不能够被二次修 ...

  4. Openstack的HA解决方案【mysql集群配置】

    使用mysql的galera做多主集群配置,galera的集群优势网络上面有对比,这里不在叙述. 1. 新建3台虚拟机(centos6.5) node1:172.17.44.163 node2:172 ...

  5. OpenStack 虚拟机监控方案确定

    Contents [hide] 1 监控方案调研过程 1.1 1. 虚拟机里内置监控模块 1.2 2. 通过libvirt获取虚拟机数据监控. 2 a.测试openstack的自待组件ceilomet ...

  6. React的一个简单示例

    首发:个人博客,更新&纠错&回复 React的核心是定义组件类,组件有三个要素:状态.行为.界面. 1.渲染状态到界面:状态由组件对象的state属性持有,从状态到界面的渲染工作由组件 ...

  7. 使用 Delphi Xe 的 TDictionary

    原本一直使用 TList, 将定义的一个个 Record 保存在TList 里面, 为了能把某些对象管理起来, 例如一个类的 n 多实例,可以进行索引.查找.释放等 今天刚看到原来已经有了一个叫 TD ...

  8. 161018、springMVC中普通类获取注解service方法

    1.新建一个类SpringBeanFactoryUtils 实现 ApplicationContextAware package com.loiot.baqi.utils; import org.sp ...

  9. Hibernate解决n+1问题

    观点:对于n+1问题的理解. 一般而言说n+1意思是,无论在一对多还是多对一当查询出n条数据之后,每条数据会关联的查询1次他的关联对象,这就叫做n+1. 但是我的理解是,本来所有信息可以一次性查询出来 ...

  10. ASP开发入门+实战电子书共50本 —下载目录

    小弟为大家整理50个ASP电子书籍,有入门,也有实战电子书,做成了一个下载目录,欢迎大家下载. 资源名称 资源地址 ASP.NET开发实战1200例_第I卷 http://down.51cto.com ...