8.SVM用于多分类
从前面SVM学习中可以看出来,SVM是一种典型的两类分类器。而现实中要解决的问题,往往是多类的问题。如何由两类分类器得到多类分类器,就是一个值得研究的问题。
以文本分类为例,现成的方法有很多,其中一劳永逸的方法,就是真的一次性考虑所有样本,并求解一个多目标函数的优化问题,一次性得到多个分类面,就像下图这样:
多个超平面把空间划分为多个区域,每个区域对应一个类别,给一篇文章,看它落在哪个区域就知道了它的分类。 只可惜这种算法还基本停留在纸面上,因为一次性求解的方法计算量实在太大,大到无法实用的地步。
目前,存在的方法主要有:
1. “1-V-R方式”,就是每次仍然解一个两类分类的问题。比如我们有5个类别,首先把类别1的样本定为正样本,其余的样本合起来定为负样本,得到一个两类分类器,它能够指出新的样本是不是第1类的;然后我们把类别2的样本定为正样本,把1、3、4、5的样本合起来定为负样本,得到一个分类器,如此下去,最终可以得到5个这样的两类分类器。这种方法的好处是每个优化问题的规模比较小,而且分类的时候速度很快(对于k类问题,把其中某一类的n个训练样本视为一类,所有其他类别归为另一类,因此只有k个分类器)。
但有时可能会出现两种特殊情况,某样本属于多个类别(分类重叠现象)或者是某样本没有判别为任何类别(不可分类现象)。而且,如果各个类别的样本数目是差不多的,“其余”那一类样本数总是要数倍于正类,这就人为的造成了上一节所说的“数据集偏斜”问题。
2. “1-V-1方式”,也就是我们所说的one-against-one方式。这种方法把其中的任意两类构造一个分类器,共有(k-1)×k/2个分类器。虽然分类器的数目多了,但是在训练阶段所用的总时间却比“一类对其余”方法少很多。
最后预测中如果出现分类重叠现象,可以采用竞争方式(各个分类器向k个类别投票,取得票最高类)。但是如果类别数非常大时,要调用的分类器数目会达到类别数的平方量级,预测的运算量不可小觑。
3. “有向无环图(DAG-SVM)”,该方法在训练阶段采用1-V-1方式,而判别阶段采用一种两向无环图的方式。
如果类别数是k,则只调用k-1个分类器即可。但是如果开始的分类器回答错误,那么后面的分类器是无论如何也无法纠正它的错误的,其实对下面每一层的分类器都存在这种错误向下累积的现象。也有一些方法可以改善整体效果,我们总希望根节点少犯错误为好,因此参与第一次分类的两个类别,最好是差别特别大,或者取在两类分类中正确率最高的那个分类器作根节点,或者我们让两类分类器在分类的时候,不光输出类别的标签,还输出一个类似“置信度”,当它对自己的结果不太自信的时候,我们就不光按照它的输出走,它可会按照一定的概率走向另一分支。
LibSVM采用的是1-V-1方式,因为这种方式思路简单,并且许多实践证实效果比1-V-R方式要好。对于 nr_class 个类的组合方式为:
for(i=;i<nr_class;i++)
{
for(j=i+;i<nr_class;j++)
{类i–V–类j}
}
8.SVM用于多分类的更多相关文章
- SVM用于线性回归
SVM用于线性回归 方法分析 在样本数据集()中,不是简单的离散值,而是连续值.如在线性回归中,预测房价.与线性回归类型,目标函数是正则平方误差函数: 在SVM回归算法中,目的是训练出超平面,采用作为 ...
- SVM 实现多分类思路
svm 是针对二分类问题, 如果要进行多分类, 无非就是多训练几个svm呗 OVR (one versus rest) 对于k个类别(k>2) 的情况, 训练k个svm, 其中, 第j个svm用 ...
- 用于文本分类的RNN-Attention网络
用于文本分类的RNN-Attention网络 https://blog.csdn.net/thriving_fcl/article/details/73381217 Attention机制在NLP上最 ...
- 将迁移学习用于文本分类 《 Universal Language Model Fine-tuning for Text Classification》
将迁移学习用于文本分类 < Universal Language Model Fine-tuning for Text Classification> 2018-07-27 20:07:4 ...
- SVM入门(十)将SVM用于多类分类
源地址:http://www.blogjava.net/zhenandaci/archive/2009/03/26/262113.html 从 SVM的那几张图可以看出来,SVM是一种典型的两类分类器 ...
- 将SVM用于多类分类
转自:http://www.lining0806.com/%E5%B0%86svm%E7%94%A8%E4%BA%8E%E5%A4%9A%E7%B1%BB%E5%88%86%E7%B1%BB/ SVM ...
- SVM实现多分类的三种方案
SVM本身是一个二值分类器 SVM算法最初是为二值分类问题设计的,当处理多类问题时,就需要构造合适的多类分类器. 目前,构造SVM多类分类器的方法主要有两类 (1)直接法,直接在目标函数上进行修改,将 ...
- SVM处理多分类问题(one-versus-rest和one-versus-one的不同)
SVM算法最初是为二值分类问题设计的,当处理多类问题时,就需要构造合适的多类分类器. 目前,构造SVM多类分类器的方法主要有两类:一类是直接法,直接在目标函数上进行修改,将多个分类面的参数求解合并到一 ...
- SVM实现邮件分类
首先学习一下svm分类的使用. 主要有以下步骤: Loading and Visualizing Dataj Training Linear SVM Implementing Gaussian Ker ...
随机推荐
- Microservice Anti-patterns
在最近的一次Microservices Practitioner Summit中,原Netflix工程师介绍了一种越来越常见的对Microservice的误用.简单地说,大家在搭建一个基于Micros ...
- console的高级使用
1.console.table()用来表格化展示数据. var people = { zqz: { name: 'zhaoqize', age: 'guess?' }, wdx: { name: 'w ...
- Oracle碎碎念~1
1. 设置SQL*Plus提示符 SQL> set sqlprompt "_user'@'_connect_identifier>" SYS@orcl> 为了对所 ...
- ASP.NET MVC一次删除多笔记录
批量删除数据记录,如下面的截屏: 先选中想删除的记录,然后点一下删除铵钮,系统将把选中的记录一次性删除.在此,Insus.NET不想每删除一笔记录连接一次数据库. 因此需要把选择的记录一次上传至服务器 ...
- ADO.NET一小记-select top 参数问题
异常处理汇总-后端系列 http://www.cnblogs.com/dunitian/p/4523006.html 最近使用ADO.NET的时候,发现select top @count xxxx 不 ...
- ComponentPattern (组合模式)
import java.util.LinkedList; /** * 组合模式 * * @author TMAC-J 主要用于树状结构,用于部分和整体区别无区别的场景 想象一下,假设有一批连锁的理发店 ...
- 《动手实现一个网页加载进度loading》
loading随处可见,比如一个app经常会有下拉刷新,上拉加载的功能,在刷新和加载的过程中为了让用户感知到 load 的过程,我们会使用一些过渡动画来表达.最常见的比如"转圈圈" ...
- SQLServer2005创建定时作业任务
SQLServer定时作业任务:即数据库自动按照定时执行的作业任务,具有周期性不需要人工干预的特点 创建步骤:(使用最高权限的账户登录--sa) 一.启动SQL Server代理(SQL Server ...
- linux yum命令详解
yum(全称为 Yellow dog Updater, Modified)是一个在Fedora和RedHat以及SUSE中的Shell前端软件包管理器.基於RPM包管理,能够从指定的服务器自动下载RP ...
- [PHP源码阅读]explode和implode函数
explode和implode函数主要用作字符串和数组间转换的操作,比如获取一段参数后根据某个字符分割字符串,或者将一个数组的结果使用一个字符合并成一个字符串输出.在PHP中经常会用到这两个函数,因此 ...