Description:Count the number of prime numbers less than a non-negative number, n.

Hint:

    1. Let's start with a isPrime function. To determine if a number is prime, we need to check if it is not divisible by any number less than n. The runtime complexity ofisPrime function would be O(n) and hence counting the total prime numbers up to n would be O(n2). Could we do better?

    2. As we know the number must not be divisible by any number > n / 2, we can immediately cut the total iterations half by dividing only up to n / 2. Could we still do better?

    3. Let's write down all of 12's factors:

      2 × 6 = 12
      3 × 4 = 12
      4 × 3 = 12
      6 × 2 = 12

      As you can see, calculations of 4 × 3 and 6 × 2 are not necessary. Therefore, we only need to consider factors up to √n because, if n is divisible by some number p, then n = p × q and since p ≤ q, we could derive that p ≤ √n.

      Our total runtime has now improved to O(n1.5), which is slightly better. Is there a faster approach?

      public int countPrimes(int n) {
      int count = 0;
      for (int i = 1; i < n; i++) {
      if (isPrime(i)) count++;
      }
      return count;
      } private boolean isPrime(int num) {
      if (num <= 1) return false;
      // Loop's ending condition is i * i <= num instead of i <= sqrt(num)
      // to avoid repeatedly calling an expensive function sqrt().
      for (int i = 2; i * i <= num; i++) {
      if (num % i == 0) return false;
      }
      return true;
      }
    4. The Sieve of Eratosthenes is one of the most efficient ways to find all prime numbers up to n. But don't let that name scare you, I promise that the concept is surprisingly simple.


      Sieve of Eratosthenes: algorithm steps for primes below 121. "Sieve of Eratosthenes Animation" by SKopp is licensed under CC BY 2.0.

      We start off with a table of n numbers. Let's look at the first number, 2. We know all multiples of 2 must not be primes, so we mark them off as non-primes. Then we look at the next number, 3. Similarly, all multiples of 3 such as 3 × 2 = 6, 3 × 3 = 9, ... must not be primes, so we mark them off as well. Now we look at the next number, 4, which was already marked off. What does this tell you? Should you mark off all multiples of 4 as well?

    5. 4 is not a prime because it is divisible by 2, which means all multiples of 4 must also be divisible by 2 and were already marked off. So we can skip 4 immediately and go to the next number, 5. Now, all multiples of 5 such as 5 × 2 = 10, 5 × 3 = 15, 5 × 4 = 20, 5 × 5 = 25, ... can be marked off. There is a slight optimization here, we do not need to start from 5 × 2 = 10. Where should we start marking off?

    6. In fact, we can mark off multiples of 5 starting at 5 × 5 = 25, because 5 × 2 = 10 was already marked off by multiple of 2, similarly 5 × 3 = 15 was already marked off by multiple of 3. Therefore, if the current number is p, we can always mark off multiples of p starting at p2, then in increments of pp2 + pp2 + 2p, ... Now what should be the terminating loop condition?

    7. It is easy to say that the terminating loop condition is p < n, which is certainly correct but not efficient. Do you still remember Hint #3?

    8. Yes, the terminating loop condition can be p < √n, as all non-primes ≥ √n must have already been marked off. When the loop terminates, all the numbers in the table that are non-marked are prime.

 class Solution {
public: int countPrimes(int n) {
if(n<=)return ;
int count=;
vector<bool> isPrime(n,true); for(int i=;i<n;i++){
if(isPrime[i]){
count++;
for(long long j=(long long)i*i;j<n;j+=i) //两个longlong必不可少,否则会运行时错误,当i很大时,i*i超出int范围
isPrime[(int)j]=false;
}
}
return count;
} };

【LeetCode】204 - Count Primes的更多相关文章

  1. 【LeetCode】 204. Count Primes 解题报告(Python & C++)

    作者: 负雪明烛 id: fuxuemingzhu 个人博客: http://fuxuemingzhu.cn/ 目录 题目描述 题目大意 解题方法 素数筛法 参考资料 日期 [LeetCode] 题目 ...

  2. 【刷题-LeetCode】204. Count Primes

    Count Primes Count the number of prime numbers less than a non-negative number, *n*. Example: Input: ...

  3. 【LeetCode】222. Count Complete Tree Nodes 解题报告(Python)

    [LeetCode]222. Count Complete Tree Nodes 解题报告(Python) 标签(空格分隔): LeetCode 作者: 负雪明烛 id: fuxuemingzhu 个 ...

  4. 【leetcode❤python】 204. Count Primes

    #-*- coding: UTF-8 -*- #Hint1:#数字i,i的倍数一定不是质数,因此去掉i的倍数,例如5,5*1,5*2,5*3,5*4,5*5都不是质数,应该去掉#5*1,5*2,5*3 ...

  5. 【LeetCode】730. Count Different Palindromic Subsequences 解题报告(Python)

    作者: 负雪明烛 id: fuxuemingzhu 个人博客: http://fuxuemingzhu.cn/ 目录 题目描述 题目大意 解题方法 记忆化搜索 动态规划 日期 题目地址:https:/ ...

  6. 【LeetCode】696. Count Binary Substrings 解题报告(Python)

    作者: 负雪明烛 id: fuxuemingzhu 个人博客: http://fuxuemingzhu.cn/ 目录 题目描述 题目大意 解题方法 方法一:暴力解法(TLE) 方法二:连续子串计算 日 ...

  7. 【LeetCode】357. Count Numbers with Unique Digits 解题报告(Python & C++)

    作者: 负雪明烛 id: fuxuemingzhu 个人博客: http://fuxuemingzhu.cn/ 目录 题目描述 题目大意 解题方法 日期 题目地址:https://leetcode.c ...

  8. 【LeetCode】38 - Count and Say

    The count-and-say sequence is the sequence of integers beginning as follows:1, 11, 21, 1211, 111221, ...

  9. 【Leetcode】357. Count Numbers with Unique Digits

    题目描述: Given a non-negative integer n, count all numbers with unique digits, x, where 0 ≤ x < 10n. ...

随机推荐

  1. Linux实用命令

    0. 基本命令 1. 压缩 解压 tar -zcvf a.tar.gz a #把a压缩成a.tar.gz tar -zxvf a.tar.gz #把a.tar.gz解压成a 2. vim小结 2.1 ...

  2. PCA基础理解

  3. MYSQL数据库错误代码提示汇总

    Mysql出错代码表 1005:创建表失败 1006:创建数据库失败 1007:数据库已存在,创建数据库失败 1008:数据库不存在,删除数据库失败 1009:不能删除数据库文件导致删除数据库失败 1 ...

  4. Mac下无法拷贝文件到移动硬盘

    Mac下无法拷贝文件到移动硬盘? 是移动硬盘的文件格式的问题. Mac系统无法识别 NTFS 格式的文件. 将移动硬盘格式化为 exFAT 格式的. 别担心,exFAT 格式的硬盘在Windows下也 ...

  5. opencore

    OpenCore是Android的多媒体核心,它是一个基于C++的实现,定义了全功能的操作系统移植层,各种基本的功能均被封装成类的形式,各层次之间的接口多使用继承等方式. OpenCore是一个多媒体 ...

  6. maven3实战之仓库(快照版本)

    maven3实战之仓库(快照版本) ---------- 在Maven的世界中,任何一个项目或者构件都必须有自己的版本.版本的值可能是1.0.0,1.3-alpha-4,2.0,2.1-SNAPSHO ...

  7. 第五讲:深入hibernate的三种状态

    学过hibernate的人都可能都知道hibernate有三种状态,transient(瞬时状态),persistent(持久化状态)以及detached(离线状态),大家伙也许也知道这三者之间的区别 ...

  8. Post的请求案例

    1.简单的post请求案例 $.post(rootPath+"/jasframework/loginLog/getStatisticsInfoByUserId.do",functi ...

  9. hdu2847(暴力)

    去年看的一道题目,但是竟然傻傻的用dfs+循环链表去做. 简直傻到爆.  不过现在做这题还是想了好久而且还有好几次WA,其实这题还是很水的.直接暴力枚举就行了,枚举的前提是要算好复杂度, 可以知道的是 ...

  10. laravel中的$request对象构造及请求生命周期

    laravel应用程序中index.php是所有请求的入口.当用户提交一个form或者访问一个网页时,首先由kernel捕捉到该session PHP运行环境下的用户数据, 生成一个request对象 ...