《JAVA与模式》之策略模式
《JAVA与模式》之策略模式
在阎宏博士的《JAVA与模式》一书中开头是这样描述策略(Strategy)模式的:
策略模式属于对象的行为模式。其用意是针对一组算法,将每一个算法封装到具有共同接口的独立的类中,从而使得它们可以相互替换。策略模式使得算法可以在不影响到客户端的情况下发生变化。
策略模式的结构
策略模式是对算法的包装,是把使用算法的责任和算法本身分割开来,委派给不同的对象管理。策略模式通常把一个系列的算法包装到一系列的策略类里面,作为一个抽象策略类的子类。用一句话来说,就是:“准备一组算法,并将每一个算法封装起来,使得它们可以互换”。下面就以一个示意性的实现讲解策略模式实例的结构。
aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAAxsAAAD5CAIAAADA2L+KAAAgAElEQVR4nO3dMcjsWP3/8akebiNelGVXBPeKBgRBrthYpFgEwWILYyGWF9IINiIptNoqaCM2EbGQW6SwsFhSbbWktAks2Eiq7XK3s0hxy/yK7//5/r97kknyTCaTk8z7VSx358lkMpNvTj45OUlOHQAAAJY5bb0AAAAAu0eiAgAAWIpEBQAAsBSJCgAAYCkSFQAAwFIkKgAAgKVIVAAAAEuRqAAAAJYiUQEAACxFogIAAFiKRAUAALAUiQoAAGApEhUAAMBSJCoAAIClSFQAAABLkagAAACWmpWoXr58eQKWefny5drVDADAVmYlqtOJriwsRRUBAA6MRIUboYoAAAdGosKNUEUAgAMjUeFGqCIAwIGRqHAjVBEA4MBIVLgRqggAcGAkqq7rurqu67reeikO7vBVBAC4ZySqLoqiJEnSNA2CIMuyrRfnsI5dRQCAO3fviSqKIk1RZVnGcXzBTJIkWbIMZVlWVbVkDrtw4CoCAOCuE1Vd10EQ2FeKohiZvm3bwRfDMFyyGHEck6gAANi1u05UaZqeC0NJkoRhGEVRmqZd19V1HYZhHMdRFMnrMpm8cjqdoiiKokgHYxVFET3SKYMgCMMwy7IgCOT1PM+jKJLXoyjK83z177ydo1YRAAAdiWowUcmwKvl3HMcSdGRi6aYKw9D2KjkdXU3T6GyzLNNQJf9umkZfEc7cjuqoVQQAQEeiGkxUQRBoxCnLUqZJ01RjVhiG+u+ul6jSNJUTeVVV5Xlu/xqGYRiGTdPY6UlU2ARPQMdKeCw67tNdJyo5AWdfkWRjX6yqSv73SYlKThcq/VOSJEEQOOOxSFTYBGsEK6G0cJ/uOlE1TRMEgfYYNU0j1/rZPioZ6tTNS1QysN2e6evMaPe6ruM4TpLEuaJQE1VZllf/jv44ahXtF2sEK6G0cJ/uOlF1jyPQm6aR4U2SrvI8lyFTMiJKxpsnSaJ3SXASVRiGeZ6XZakv6q2tsiyTF+WSwKZp2rYNgsBeVCgxS/PcUR24inaKNYKVUFq4T/eeqLquy/NcM42+KPemSpJE4lTbttJH1batJCf5t0wsnU/27qBN08i5P718T95SlmX/7d1jXHPGVx3Msatoj1gjWAmlhftEosKNUEW+2d0aKYqi/7Qo58WiKBbeH26+LMuKokjT9CrPsCqKoj+ecvBF/+2utICrIFHhRqgi3+xrjcwPHDOfJbUwBuV5Lufui6K41tOrDhOq9lVawLWQqHAjVJFvdrRG1ogaCx8elabpGkHnGKFqR6UFXBGJCjdCFflmL2tkfsgoyzJJEnulrQyILIrCXllS17XcOaUoiqIo7IjGLMuSJNE+J5nSPuFALi4pikKGTtpzjnVdp2lq327naa9l6X/QZd/XW3spLeC6SFS4EarIN7tYI0VR9O8qMviiqKrKGUelN0NxTs85jy7ouk4vtrXX7XZdJw+P6rouSRKNNf0+Kp1hVVX69iRJZFGrqtIJdD5t2/YXo+u6LMv616kMvuinXZQWcHUkKtwIVeSbvayRwbuKnLvVSD9RDQadrpeonL/amTi38BX9RCVxp6oq2yNl56O9Wfaj+w9RkDn0v9fC05S3tJfSAq6LRIUboYp8s6M1Mj9ULUlUcn5QjEwp+olKg5R+UH9hRBiG9oPsaccDxKluV6UFXBGJCjdCFflmX2tkZqi6IFFJoHFSi005cxKVDOHqf5BdGJ3nufs7HCNOdXsrLeBaZtX9w8PD9Z+liTvz8PCwdjXjSU572+3NCVXzE1Ucx3K6TR9gEEWRDm/Se/N2sxOVLon0PMlsdRxVZ27rkCSJzl9fPEyc6nZYWsBV0EeFG6GKfLPHNTJ4vZu+WJalphnpEJIx5jKAqX+KLcsym5y6x8dG2Wdx6gyd+4imaaq3pBJ5nsuUTdNkWabTy2V9dko7sZ1n/6sNvui/PZYWsByJCjdCFfmGNYKVUFq4TyQq3AhV5BvWCFZCaeE+kaieZkc32fMNVeQb1ghWQmnhPpGo5iqKIs/zqqryPL/Zo1iPhCryDWsEK6G0cJ9WTFTnbmo831We6H4t9nof54ESzuDWp1r49r2gkfUNawQrobRwn1ZMVIOXOtsLbcZlWXazU2xzotu5fqlzz5GYaeHbd4RG1jesEayE0sJ9ukKikqdlpWkqdxzuuq6u6zzPnQeRyh3w5ILhNE01oMhVxEKSjTyINIoi50Gk3eNdie2dYOTppPKAUvlr27ayMG3b1nUdx/Fkb1kQBJMdRfIEVud5EXJttt4BWX8QubFNnuf2ua268HqDmcG3d483zrFT2h8qjmOZf1mWURTJG+Wv8wPr7dHI+ubYa0Q2rrIsverqvhPHLi3gnCckKk0tSuKF7vXbth1/EKk8K1TCkE557v57gw8i1cSg79J/lGU5+OnOGbpBM9tcSTD9XNX/pjYMSVazXW7O9P236ytN02hXn01musD678GH2HuFRtY3B14jcRzLFpdlmfNUvoVHHT4ftPjjwKUFjLhCH5Wkq34oGUxUg6cCy7LM8zyO48lEpf8Ow1A+0QayfqJa4wi1KIpzN2VWcvc/58WmafI87zfx409s1YltRtQvVde1RDf/b6xMI+ubo66Ruq7tFqr3Ru+6rmmaOYdYI849oRnWUUsLGHedcVRyck1TjhhMVP3mLIoiOSs32Ucl8xf6JzmH2H9Wg6S0K+YMe2wqwch+BWfi/sLbhRnvo5Lv0v+mktLkXIbzdslqF36xW5msotevX3/wwQevX7++yeLgsLu9qqqCIOh3JskRXZIkVVVpS1VVlZxA73r3RrGTdY/3Tw+CQN5ip2yapj/oU1+s61pGIOgb5R8H7u46amkB466QqLQpcQZZ294j/Uf/Kjl95Vyi0kbNHnfqi3IacbBtiqJo5vHonKbNzirP88HHfulSDcbB/vSDb5d4qn+15woHh+rLMy4ml39zI1X0+vXrFy9evHr1qizLV69evXjxglx1gVevXv3617/+5JNPZk5/4N1eFEVBENjDHhleKWft0zSVP8mLQRDI2ER5V9d1eZ7LZEmS6JYro0WDIJDhjNpoJEki/ethGOoWal8MwzBJEumclo1dZrv8amhvHbi0gBFXSFRhGOrD251IVJZl0zTacPR7kpqm0TwhyUCTinbG6JBt7eaRx2bpp8jo7zAMnQ75wXORfW3byiD68clk/LhM73yQDPCqqkpPLjhP7Oq6TgfIy2AyO+K+/3YZBdI9PqdMX9Rv2u+mmvyamxusIs1Sn3/+ub74+eefk6su8Pnnn//tb3/72c9+9vz581evXv3zn/98+/btyPTH3u3JfeOcTVvCkDOlhB75t2x3clmMvCKdUjqxc8q+LEt9rx0PoJPZT5SY1X358cmHdOzSAs65QqKS3uw8z/vxpSxLbYyappEpncnkjJXTHaVzdnJJ0zQ2i+goIhHHsW375g+YmPM40qZp5NMHO4rk8ai6VNKr73wdiUcymfMn+3adSZ7n+mKWZbYJtj1eNrP6zKmiwSxlkasu9r///e/169e/+tWvnj179vOf//z169dv3rzpT3YPu70sy06nk24g5xJV/8Usy6TX6nQ6jSQq6ffSK3P1r3raUXqn5MWmaWTLPfwtgu+htIC+3d8zXYed2svi9DYNmy7aNdnsKPeh6B57+Py/yk9oFU1mKYtctdDHH3/86tWr995778c//vFf/vIX+5v7vF0v4Yxqspe8zExUURRpYzLeRyV3M6kM/dAoiuzNU3TOchXOom/ovaOWFjBu94mqexxAant9pD9sw0VaiXxN25u1o+cMnk6nJ2Upi1y13L///e/f/va3L168+N73vvf73//+s88+83y7vphzTbGEGPm33tbEXgXsJKqmaWxsCoLA9gHb03nd47lF/ase9gRBkCRJv0tbbtS3i07lJY5aWsC4IyQq7MIJ/tm6KNYigab/FM6yLOV2vva6GRk5bqNPGIZyOys5kWevYpaeJ3t7FBnBKTFO+8VlnuEjZ9nW++KeOHBpASNIVLiR0+m0pJ/p4v4tKOcM4IG3a7nOY/BJVjJC0U7pnLATcvsVGT3pdHj3x4zKzfDshSm2k8xeA2gHJxzYgUsLGEGiwo1IFV1w/o4stcTIKHW265XICHS54EaGrnddV9e1dHc516AcEqWF+0Siwo3YKpqZq8hSF5tzJwW261X1L/i1d0g5NkoL94lEhRvpV9FIriJLXea///3vH//4x5cvX7548WLybp9s11gJpYX7NKvuHx4ebj5kFkfz8PAwWF1OriJLXeyDDz7Q6/jmTH9it4d1UFq4T/RR4UbGq0hy1el0IkvdDNs1VkJp4T6RqHAjVJFv6HvGSs51SAPHdheJSp9AvPWC3LW9V9HxsEawEkoL9+n4iUrvhpxlGaFqQ7uuokNijWAllBbu0xUSVdM06SPfbl7nPGDYt8W7KzSyvmGN+EwetCz/3R1KC/fpkkRl7zjcdZ19FGj/KaQzLbxNy7m3O48plfsgL/kgXIxG1jesEW8VRSGHghe3qNuitHCfLklUdiPP89z+b9u2FxxU9Z8nepW353nez09OxsLN0Mj65mBrpG3boijkiXv6fL1VFUVRFMXVD9LSNNUGzXlmziaSJBk8ZC3L8lxzerDSAmZamqiiKBpMM3IqUJ6+Lq+UZSlPEk2SRJ/Q3ratPMo0y7KiKOw4pyzLkiTJssxOmaaptJt5nkt6O/f2ruviOO43BCSqrdDI+ubcGpl5ULRwVOJK57PCMJw554ULEMexzMF5EPJC/WcRbt5kjSwAiQqwnpCoJNDIY6rkH23b2oeAWjpiqSxLTWBBEMjERVFoVOq+fEwm9FHwbdvqRisf13VdlmW2Ney/XQxu7fYx8rglGlnfDK6R+b07dhO+wBrns5qmmZk/Fnb8OAM0r8W2lmrzRHVOlmXnfkY2dtynpX1Ug4nK2dL0GE6bBnmAqJ3hyGGZfbZolmXS0eUsz/xE5W3zdHg0sr4ZXCP9Pbrs5suy1MOYoijkScB6cNI0TZZl8t6yLG3YkjNxNn9Id3WSJHVd20MjmYmzk5a2oizLqqpkJvK8PJm+qio7B+ftZVnKG9M01TakruskSeTIyunDdo705IvLZHqlcNM0dV1Lu2ePzfQXcOYpM5nzYresyarrenLKtm11seXf+uvVde2sprZty7JMksTpzKvrWn6Nkc45Nnbcp1XO+jkRR7fz+YkqDMPikXSG6Z+CIHBaonOJavB1EtVWaGR9Y9dI9Ui2Gt1w9AS90yvT346kD1tOxwdB0HWdHWPkTN8/I6/zt7FG+6rjOJZ41D02DrLMTvxy9vFRFGVZ1jSN7eruhkZY6qI6U0ZRJIPE0zTVpWqaxrlqOEkS/XFsK9c/MyhxZPA3GRz36cTTETLKYnKyKIpkkZqm0Y/T5XciqZ4WUDqQI8/zkbaUjR33aWmiktFO+r9lWfYPNC/oozp39CNHUc6WfC5RycGofaXfFOJmaGR9009UGqdkg6qqyg551In7W1bXdVEU9WOKTu9ss87/2hZDGwcbJpwLimXxnO60/ik//V9ngZ3J6rq2zYJ912BD5PTldOYcYlEUOis7XGHwi4z/JmJwMOgS+ik2turXqapqJHraWDl+3pONHffpCvejiqJItnnbcNhxVP3WxElUut1qE5wkiW7J+na994Fz4q//drts9n8He9pxGzSyvumvkf4pvziO5QSffVFO2DlTDvZayX63f9zl9LsEQWD7pLUXZLAvShKVM5hSXreT2TTgLHA/ysilLdJTpYs6+DW7oeM9+WjplBrs7BHyO+g3dY7u+rNd4whQvrv+ek4Mda7ddn4ou4Tjnf1s7LhP17lnugwgsIFGrsKTdkpe0UEJ3ePQCmcAhBN3ZNu2h7l6aCh/ci4MHExLTdNo+yit8JzvizXQyPqmv0acTVj+ITtdmw8Gw1M/denc4ji2W6vT7yJBpL94mnKcHmjpKel3kPRP+Q3+u7+o53rEB0NDv39ODym7L/fHDw6TGjmi63/c1TuousdxGrpqsiyzraKzhHaRbIflZNRjY8d9Ov5TaHRA607vlXcYu66iQxpfIzY32AMYjRR2XLmTBpqm0WwhI5MG99MSlexJNxlsrnOQy4qd8DQ4YGjkxOK5U36aKmyi0s8aPLPZ9TqubKeOjOOWv+pwJTtP+zv0E6GTUZ50V63++PFzwjAcPD/Q9bKm87/2xEL/8iAHGzvu0/ETFTxBFflmfI3EcSw3Senv2uM4lpNc3eO5eBnBbXfqcRxrJ5PTxaV/0lfkHnX2RbmrZF3XVVU5FxQ7Pc1ygzqZg7y9bVtNXW3byhfR6fVL6Stypk/P08kM5V3OtW/6XfR16a2Rn0h+B0lU0vGm1z8KyY7Oi/ZH0Lw1OEr9nDlX+al+35J+d5sm5RfoP8VL1pHzA/axseM+kahwI1SRb7xdI7LP1v+1PVh1XR/1fnJyTU+3+BkSPvC2tIBVkahwI1SRb3xeIzqCW8dQS//QbR4vs5WdPhe5z+fSAtZDosKNUEW+YY1gJZQW7hOJyndyjuMAZzqoIt+wRrASSgv3iUTlNb0TT9u2c26IvKHJExZUkW9YI1gJpYX7dMxEJdeq6I37bvBx8kFXDz32whwZVnLd+T9J0zRBEAz2lsmvPf723VXR4bFGsBJKC/fpkkS18LHtgxbeyG7w7YNPcR608DHy/QcXXkX/TjybP5Rw5BapJKrdYY1gJZQW7tPS5/pdxcKrhc+9fWaikrvXXPzp3WpBpz/b8WdpbYtEtTusEayE0sJ9uk6ikudV2debppGb7Nmn0MidduVefPKiPKwmDEM5a+Y8WEZuPWenlGfXyM302rYdeXv35UQl45DkgWL2hr9yukpesWFFllNvFS0fJKFB7n0nE5dlWRRFGIbOKTlZePv1u8cH6cx5sTvznAfneYgjsiw792wN56Pli8i/9QeU5bedkXJmc/CJZrLwJKrdef78+QnzfOUrX9l6Efbk+fPnW1c3sIEnJCoJNGmayqMh9MF8+rwF+2Ry+6RkDQFBEEjEkdvM6Pz1YfIqSRJ5RR5hIS+2bSt7dOchqf23C6ePyj68wnlelRNT7OI5TweTj3buQOiECTt4S/9kn0gahqFkFxubnHN8g+HJeTL8CAlAk5PZx87bdSc/r/3xRRAE9n/jOO6vpnNOJCrs0w9/+MPvfve777///tYLAsBrS/uo5FFW8m/pNOp6z123Tw+VfzhxoR+J7O45DEMdJuX0MJ17u77RSVT6v+OJyv7VPm8hDMPBk27nnqgq3Vfyvza7aFeQXSTnebHnEtV1B7/rI9XsE6ntYjjPuHUS1fxn0XckKuzTp59++s1vfvPNmzff//73//CHP2y9OAD8tTRRSWeVM70TcfoDtycTlZ5Hk94g2yMVBIEzDv3qicp+uh26dC40OK9LT5K8y/ZL9RdSevXsZ43Mtus6OWs5uAwXk0/RX2B81dhEJQ9cG1laB4kKe/Ttb3/7z3/+c9d1n3322bvvvvvFF19svUQAPHXNPqrusfdleR/VuTFAcmrM2Xmv2kd1wethGGoE1D/ZPqru8YfqP4p1/OPiOF54UWSfPLdV19eT+qicU6LjH0Siwu78/e9/f/Hixdu3b+V/f/e73/3gBz/YdpEAeOsK96PScVQyfFtetOOo+mOSnBCjD1q3T57XWenb5Sn3MnN74q//djEzUelgJv2rjD3Xmdtveu4XcP5Xc4+cshT268tnyYvy6+mLyg5B6554k08Z7jZnSrnLlH3FjqNyRsf3E5Uss1wfMH6TTxIVdue99977+OOP9X/fvn37jW9841//+teGiwTAW9e5w6ec+7OBRtKVHaMt+UA6PPrn8qSnxHbAyEB4O75He3TkT86FgfbtMoZJ3i5zkFskSDyysxIysQ00srR5nss8dTS6c0mg/SBdHnmGvF5+qIlQPjfLMvtBOvFgN1uSJDrbJ42gctLYuP6ZRPmFnWv9+t9U3isLL1dfjnwKiQr78pvf/OZHP/qR8+Inn3zy7rvvbrI8ADx3zHumH4nEnYW37PIBVYR9+drXvvbZZ5/1X//www8//PDD2y8PAM+RqHAjVBF25Cc/+ckvf/nLwT+9efPmnXfe+c9//nPjRQLgORIVboQqwl588cUXX/3qV9+8eXNugr/+9a/cngqAg0SFG6GKsBdzbj3F7akAOEhUuBGqCLvw6aeffv3rX9c7JpzD7akAOEhUuBGqCLvwrW996x//+MecKbk9FQBr1k6OJ6piOR6eCv/96U9/+s53vjNzYm5PBcCi2wAA/p933nln8Nmd53B7KgCKRAUAXdd1v/jFL376058+9V3cngqAIFEBQNd13bNnzy47o/3s2bOtlx3A9khUADDhxHUVAKbQTADABBIVgEk0EwAwgUQFYBLNBABMIFEBmEQzAQATSFQAJtFMAMAEEhWASTQTADCBRAVgEs0EAEx4//33t14EAL4jUQEAACxFogIAAFiKRAUAALAUiQoAJjCOCsAkEhUATOBaPwCTaCYAYAKJCsAkmgkAmECiAjCJZgIAJpCoAEyimQCACSQqAJNoJgBgAokKwCSaCQCYQKICMIlmAgAmcD8qAJNIVAAAAEuRqAAAAJYiUQEAACxFogKACYyjAjCJRAUAE7jWD8AkmgkAmECiAjCJZgIAJpCoAEyimQCACSQqAJNoJgBgAokKwCSaCQCYQKICMIlmAgAmkKgATKKZAIAJ3I8KwCQSFQAAwFIkKvji5cuXJ+Ojjz7SP3300UenIUzDNEzDNEzTnwabIFHBFyeGqgAAdot9GHxBooK3OPoHMIl9GHzBTgveIu5jF2hFt0UzAQATSFTYBQp1W/z6ADCBHRV2gULdFr8+AExgR4VdoFC3xa8PXzACAN5iR4VdoFC3xa8PX9AWwFsUJ3aBQt0Wvz58QVsAb1Gc2AUKdVv8+vAFbQG8xSlp7AKt6Lb49eEL2gIAWILovy32YfAFiQoAsF/sw+ALEhUAYL/Yh8EXJCp4i5MpACaxD4Mv2GnBW8R97AKt6LZoJgBgAokKu0ChbotfHwAmsKPCLlCo2+LXB4AJ7KiwCxTqtvj14QtGAMBb7KiwCxTqtvj14QvaAniL4sQuUKjb4teHL2gL4C2KE7tAoW6LXx++oC2AtzgljV2gFd0Wvz58QVsAAEsQ/bfFPgy+IFEBAPaLfdiKXr58eQJW8PLlS+oT3rpKfVKlWNUVq1SRqFZ0otMF67hKaVGfWMkVS4sqxUrWKC2KdUW0BVgJiQo+I1HBfySqnaEtwEpIVPAZiQr+I1HtDG0BVkKigs9IVPAfiWpnaAuwEhIVfEaigv9IVDtDW4CVkKjgMxIV/Eei2plt24KyLKMoiqIoTdOqqjZckklJkkRRlCRJlmVbL8uEpmnCMNx6KY6QqPZSn3Vdx3EcRVGWZT7XZ2psvpyHSVR7qdJuV61onudRFMVxnCTJhotBotqZDdsCKVn5dxzHaZrefhnatm3bdnKyMAylqaqqKggC+6eyLJcswMK3D0rT9HQ61XV99Tk/yd4T1V7qUwK0TJbnuROmFxZYURRL3u5o2zYIAlnUOI63zf3HSFR7qdJuV62oBqm2bXWxN0Gi2pkN24IgCOxeX9uFW8qybHJrqarKNv1pmjZNI/+u63phE7bGt46iKAzDzY8C956o9lKfaZraw+g4jvXfHtan7kqrqto29x8jUe2lSnfUipZlaQNfWZab5FRBotqZrdqCPM+dwxTVNI09KdC2bZqmRVFIZTuHI3me2xflhILsYLIsy/Ncp3TeLv8bBEGSJM5snSnrug6CwPlcWaowDKWzXZZWXkzTNM9z+RbOx2VZpu1IlmVJkgRBIG+xB3nypZydjZzQkdanaZosy+SN+q31s2SRNmlbrV0nqpH6lFWppTVen7KadKWP1Kez0ufXZ5ZlYRjqR9ilcupT3pgkSV3X8m99V78+0zSN41jr0/lxLq5P/VWLojj3C9/GARIVregarWgcx/awZFskqp3Zqi2QDan/elVVURSVZVkUhe4nkiQJw1BahCAIdHOSnhg5+pHTE1VVycRxHGdZdjqd5OApSZI4jquq0q2lbVt5Y57nVVXpptifUpY2CII4jm2LIJ+VJElVVbrdyjz1BLy0dzqZ3YvUdS2931VV2SM8+6W0LZMvKG+XxavrOgxDbfXiOJavUFWVDKfYdnfV7TxRnavPPM/l95ccIy8O1qesoKIoZF3Ii+fqs7/Sn1SfEn2SJLG5ql+fMk8pIcncErsH67OqKjmHeN361J1fEATXPaX4VAdIVLSia7Si8itdZQUtR6LaGd/agjAM7cG3bI32vIZuIXaXJlu+zlnHasgm2jSNjRdOa2K3w5Epm6bR/Zb9Fv1tT9oC+bcsQJIk2lTJxm8/wr7XjorQVGQ7zO0CZ1kmE8dxrI2R7QzYdijV8RKVUx5RFEkpDtanjMDVKe0KcupzcKXr3GbWpwxPDoLA9igM1qdkGp1hd74+nTM15xb1SfWpO7/Nu1EPnKhoRZdUKYkKl/OtLbCbn24MdpPTcpeO4jlzlvlEj+zW6LQFI1PaCXSnda4tcF5smkYvxhlvC2QCmTgMQ/mrvXbPOb8jE9jvK58i87E719s7XqJy4o5mgsH67BfPuTkPrnSd25PqU04DOScZnQXov+tcffYT1fL6dL7dhqP9DpyoaEWXVCmJCpfbqi1wRv91XSdHLbZnZbwtcK5rtXuRfltw7qqiflvQn7KuaxtNZMSAftactsDuOSbbgsGLdaUHPo5j50SJ/Aj2LfbCn21HA+w6UQ3WZz9R6dH/YKKyZzdG6vPcSu/m1acdVuK8ZWaiOlefg4lqYX06iWrDXdcBEhWtqP6vnXJhlcoZT/2rDLfqz+02SFQ7s+FVKnYL0fGPck8deVEvBh5sC+yozLZtNUkMHrfZLdCea9Deb92c+lPKuXb7FjuEU/apeaHB5fAAAAswSURBVJ5rE+a0Bf0+8KIodMCBHk3KAtgmsm1bmbkM6pTZOtt2WZb2gik5mSL/Hhm1ehu7TlTdmfp0Ds2lEs7tqzTR2suF+vU5uNJ1bpP1KYNz9S2Dmc/Wp7M3GqlP3RnrTmVhfdrFkzspbNiNeoBE1dGKPv7vFVtR+Sxd/jiOncs+bolEtTMbtgVyKCM7HqeXRQY26uDHMAzDMGzbtixLOb8u25IcTMhd42R7kBMxstk4133IyXsd+yJk5Ka9j8vglNKHLFu+c0gngxx1UVNz6YpOJhPostk+Z/kgGUaqrzhfSkZDy165fxcf/V/7Q8l8giDY+9GVb/UpL8qq1CHk5+pT1qysSnn7ufrsr3Qxpz6dwea2vJ36tFdm2clG6lM+3e4+L67P7rEmpX9i83Mrx0hUtKLdVVvR8W96eySqndn8+QmD8f9JxwTzx18vnPLc22cu7bnJBl937jFjr9XXw6+qqra9V8q4vScqMbl2LpvDIOrzlo6RqASt6BpVuvlNkjsS1e5s3hZgUl3XcsQpx2cyCEA7sbdeurOOkagw6Z7r8+qzwkqo0v8/z6vPEYq2ACshUcFnJCr4j0S1M7QFWAmJCj4jUcF/JKqdoS3ASkhU8BmJCv4jUe0MbQFWQqKCz0hU8B+JamdoC7ASEhV8RqKC/0hUO0NbgJWQqOAzEhX8R6LaGdoCrIREBZ+RqOA/EtXOPDw8nIAVPDw8UJ/w1lXqkyrFqq5YpYpEtaITR1dYx1VKi/rESq5YWlQpVrJGaVGsK6ItwEpIVPAZiQr+I1HtDG0BVkKigs9IVPAfiWpnaAuwEhIVfEaigv9IVDtDW4CVkKjgMxIV/Eei2hnaAqyERAWfkajgPxLVztAWYCUkKviMRAX/kah2hrYAKyFRwWckKviPRLUztAVYCYkKPiNRwX8kqp2hLcBKSFTwGYkK/iNR7QxtAVZCooLPSFTwH4lqZ2gLsBISFXxGooL/SFQ7Q1uAlZCo4DMSFfxHotoZ2gKshEQFn5Go4D8S1c7QFmAlJCr4jEQF/5Godoa2ACshUcFnJCr4j0S1M7QFWAmJCj4jUcF/JKqdoS3ASkhU8BmJCv4jUe0MbQFWQqKCz0hU8B+JamdoC7ASEhV8RqKC/0hUO0NbgJWQqOAzEhX8R6LamYeHhxOwgoeHB+oT3rpKfVKlWNUVq1SRqFZ04ugK67hKaVGfWMkVS4sqxUrWKC2KdUW0BVgJiQo+I1HBfySqnaEt8E1RFF3XlWW59YIsRaI6JOpz1VnhKqjSsXlefY5QtAVeyfNcW4E4jjddlq7ruqZpzv2pqqrx95KojmdH9Tm5NyVRHdWOqvQ2rag7z6vPEeoYbUHbtnVdh2GY53ld12t/XJ7neZ5XVRVF0RVn2zRNkiT6v3Vdp2l6xflfIAzDwWVomiYMw/H3kqgU9bmGpmlOp9PgPmnOdydROajSlWzeirrzvPocoZwVNrP4lvemrrHFhmE4GfmF9AlfTJuALMuWzMcRx7FzNLP5AdbI0dVt9ljU5wXupz5HVtOGiYoqneN+qnTzVtSd59XnCHVZWzBYo23bzvzQLMtmbrRPMrMtqKpq4VHLdQ+qRmYrh3Ez336Dw0rL50RFfS55+/zZPqk+R/YrF/NkX0WVXsDPKj1kK+rO8+pzhBpvC4qiyLIsTdM4juWIpK7rPM+DICiKoigK2f7rus6yLIoi+Yduk3mep4+kUtu2LYoiiqIsy4qisOWbJIlMqduzdNimaZokify1bVtZGOmgjuPYHufZtqBt2ziOZeHl7fqNkiSRr2PfaxdVp4yiqKqqPM+TJJHSL8uyKIowDOXr9xfedjhLozPnRfmyzivdU5qtqqpOp9P4Tquu6yiKdD3GcSy/v3x0mqZZlukakTXVb15l4WUtjy/SDRLVzPosy1K+YFEUaZrqkusa119+YX3KryoLWZal/sJiSX3qosq+QddO27ay6emHzq9PrfnBF52femF9pmkaBMH4NE+qT2lqnHnKGR/5lfxJVLSitKLbtqLuPK8+RyhZYbrBhGEo/5Cqsnsa2zc72FrJCfiu64qikLfrZE5N2w1eZ6gHZ/ou/UdZloOf7mwnTuFKyfYXuL+BlWWpr9gDGrvF2qMc5+vbg0X7J2fP7UzQNI09SB3c7J80yGDOkWWWZfJFmqbRb2Q/wvm4/k+qLeAt+6iW16f8kvJdZEo7wMIpyCX1qf+u69o5rXNxfaZpakfaaosv+9T+Z82pTwl8+qJMcG5DGFyq7on1Oefo/6n16SSqwdV0ztUTFa0orWj/350Hrag7z6vPEWr86ErahX5TeK4t6L9YlmWe53rgrp/SbwvsfOQTbVPSbwvKsnQWrF+4g5vo4B5Lp7Sbn3YJOPpfXzYte9Ash2vOZM5H2/3BwqOrmZqmkYXX71VVlf3cJEnsb+j8pHYV+3DWb359VlXVP8nStq00/SOV05/hzPrsr7iL69P+1e7hwjAcPJ6eU59xHPd3Huc2hM7X+rRbkDPO158+KlpRWtFtW1F3nlefI9TkCADp2NTtUwzWQf/FKIrk0Hny6ErmL/RPco7GKdbusX3pbzlL2gK5vEWdW87Bb2oXxrYjg22BtK3ONx2cbffEEQAzyYGsLtv4qnF+Utt4+ZCoutn12V/p0nsviWSyj+pJ9SmdE1esT+lD0k+f7IaZU5+Dw2XObQjnPm7z+rQFWVWVn4mqoxWlFd20FXXnefU5QjkrzKk8e0J9sFfTFkp/C5ksON3qbFOoL8qOZHCopg4csS5oC2Tm2ovrLMDMtmCwHZc2VF+3593tktj5LLxKZeaYVjnY1ZNEeryly2+XwflJB3vjz1kjUV1cn/0dgO2kOZeoLqvP/tgUncll9emslKcmqsH6dGpelvbchiBucxXVk+rTOevnSaKiFe1oRX1qRd15Xn2OUOMrTIa+dkMbc1mWTdM4Qxrte22RZVmWJIlub3rGXU8n6wFK0zTaNS0n4KMoCsPQ2SoGe9Gdwk2SxJ6utpuKLJgdFKkHgnme68ZgT3irtm2db6qblvR161hRXQAZiakTyxe0L+ovdvGdVIqiCIJgZnPg7Id0mI4dCSGcn1RGpOrHjR/53eB+VPPrs3+Mrvsq+dnzPNfVsbw+z53Quaw+bXeac+Kmv8bn16cOqrU1P7ghiCX1KaOLZk48vz6dKbWRkTG/47cnuNn9qGhFaUW3bUXdeV59jlDjK0z6VAdv+FaWpT32kinrurblKOfFnQMpnXN/S7DXrThnxJ1hH07J2gXQOVRVJW9p27aqKrt7sCMKVVVVdpFkhjLPwQ+y31Q2bPkIO738es6eqa7r/ovC7tf7HfLj5t8epn/IKIvUX0fyTfs/XdM0kxfD3yBRzazPpmn0uzhv1/c6v8nC+nRusXOV+izL0u56B9fOU+uzv0PqehuCdXF9Nk0z2FExaE59nvumuuJuU59zZkUrSiu6bSvqzvPqc4Ty+W6/2n9rL+hIHi+D33TRVsQTqa4+k5UM1mcURVmWrXHvJU9Qn6vO6upoRXeNRLUzPrcFXdc5B0zdY3/DhouEmQ6fqLqh+nQORuGtO0lUHa3onpGodsbztgD7dQ+JCvt1P4kK+0Wi2hnaAqyERAWfkajgPxLVztAWYCUkKviMRAX/kah2hrYAKyFRwWckKviPRLUztAVYCYkKPiNRwX8kqp15/vz5CVjB8+fPqU946yr1SZViVVesUkWiAgAAWIpEBQAAsBSJCgAAYCkSFQAAwFIkKgAAgKVIVAAAAEuRqAAAAJYiUQEAACxFogIAAFiKRAUAALAUiQoAAGApEhUAAMBSJCoAAICl/g9V2E9kgpba6AAAAABJRU5ErkJggg==" alt="" />
这个模式涉及到三个角色:
● 环境(Context)角色:持有一个Strategy的引用。
● 抽象策略(Strategy)角色:这是一个抽象角色,通常由一个接口或抽象类实现。此角色给出所有的具体策略类所需的接口。
● 具体策略(ConcreteStrategy)角色:包装了相关的算法或行为。
源代码
环境角色类
public class Context {
//持有一个具体策略的对象
private Strategy strategy;
/**
* 构造函数,传入一个具体策略对象
* @param strategy 具体策略对象
*/
public Context(Strategy strategy){
this.strategy = strategy;
}
/**
* 策略方法
*/
public void contextInterface(){ strategy.strategyInterface();
} }
抽象策略类
public interface Strategy {
/**
* 策略方法
*/
public void strategyInterface();
}
具体策略类
public class ConcreteStrategyA implements Strategy { @Override
public void strategyInterface() {
//相关的业务
} }
public class ConcreteStrategyB implements Strategy { @Override
public void strategyInterface() {
//相关的业务
} }
public class ConcreteStrategyC implements Strategy { @Override
public void strategyInterface() {
//相关的业务
} }
使用场景
假设现在要设计一个贩卖各类书籍的电子商务网站的购物车系统。一个最简单的情况就是把所有货品的单价乘上数量,但是实际情况肯定比这要复杂。比如,本网站可能对所有的高级会员提供每本20%的促销折扣;对中级会员提供每本10%的促销折扣;对初级会员没有折扣。
根据描述,折扣是根据以下的几个算法中的一个进行的:
算法一:对初级会员没有折扣。
算法二:对中级会员提供10%的促销折扣。
算法三:对高级会员提供20%的促销折扣。
使用策略模式来实现的结构图如下:
aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAA3YAAADuCAIAAAD6EgJpAAAgAElEQVR4nO3dIajs2P3A8VGXNYVnlm0pdJ8J/GGhXFpTEbFUVaxoTKl8EFOoKSWiVatCZU1KqShPRFRUlKhVJbImsFBTotZl11WMWJm/+HF//c05mcyZyUzmTO73Ix5z8zLJmeSXk1/OOUl2IwAAAHBVu3sXAAAAAFtDigkAAIArI8UEAADAlZFiAgAA4MpIMQEAAHBlpJgAAAC4MlJMAAAAXBkpJgAAAK7sRIr5/Py8A5Z5fn5eJ5oBAEAkTqSYux3NnFiKKAIA4LUhxcTNEUUAALw2pJi4OaIIAIDXhhQTN0cUAQDw2pBi4uaIIgAAXhtSTNwcUQQAwGtDirnIMAz3LsIDIIoAAHhtSDH/p67rNE2zLCvLMs/zLMtOfkXmX6FsD+1VRREAABhJMR1pmpZlKZ+zLMvzfH7+pmnatr15sR7ca4siAABAinnApphlWaZpqv+13+8nv3JsOtRriyIAAECKecBvxez7PsuyJEmKoiiKQnvGdbrOL5qmyV7MT3w9XlsUAQAAUswDx8ZipmmaJEnXdZJZ2uk2xWzbNkkSadfU/xqGQVtDq6p6hVnma4siAABAinkgTdOiKLquc24Vl+mT89sUsygKHb7Z973kmpKwdl3XdV1d10mS3PIXxOi1RRFCPD8/7wCs5fn5+d4HPV4dUswDTsp47vTJ2cqylJZRdd0yx++1RRFCEBXAmjjisD5SzAMLU0zJJvVPafh0OsebprlmiR/Ba4sihCAqgDVxxGF9pJgHFqaYwzAkSVLX9TiOVVXpfyVJUlWVM/H1eG1RhBBEBbAmjjisjxTzf+q6lo5s+xyi/X4/2cd9bPowDNKWKYnmzMTX41VFEQIRFcCaOOKwPlJM3BxRBB9RsYT0isxPtHcf3lpZlk3TTN4TeYGQX4dzccRhfaSYuDmiCD6i4mKBGVjf94Ejvxe+oizPc+n5KYqi7/sli1JkmVfHEYf1kWLi5ogi+IiKy9wi91rY2HmjZ/2SZV4XRxzWR4qJmyOK4CMqLhCedckbxewwcRlrXtd1URQ6vW1beWlZ0zS2ybPv+7Isi6LQibJAeb6vLkEaSvXrOopdOs2LonDKVlWVXbudGP7TyDIvwxGH9ZFi4uaIIviIinNNPoxi5gkVzp2IXddlWTbZo+00Qw7DoO2aZVlqN7osUN5MYRs+na/3fa+DMmV+nU3fRqFpoi6nbdvJ3zI5vvNagz5fFY44rI8UEzdHFMFHVJxLmg9DJgo/xdQ/beY3ejmi/d+u62y6OZkF+h3l+/1+GIa2baXhc3xpLtX/lVzTFmkcR33Rrqrr2n8Kx+REnMQRh/WRYuLmiCL4iIoLnJVlLkkxq6pqXmiLo/OtY1+XKZIF6lcm01PJX3VFzgzkl9fFEYf1kWLi5ogi+IiKy4RnmRekmNqRbe8x1xGWgSmmHcGpX7GtmOM4Sje9U2z7QGLyy6vjiMP6TsTc09PTDljm6elpnWjGA9lxwrtUYJZ5boq53+9l4jAMOm5S7u+Z/JbzdbteTQSLoui6ThJWXeZ+v9cZtCfdTiS/vAWOOKyPVkzcHFEEH1GxRN/3ts3Pnygd3NLfLVPkjnIZB1lVlU3X5P5xe0f5MAzydc0pZYF1XdvZ9vu9dHA3TWMbPuVNuU3TyHJ0umS9ztM6dWadMvk4z8BnfOIYjjisjxQTN0cUwUdUAGviiMP6SDFxc0QRfEQFsCaOOKyPFHMNy1+q1vf9MAxXKcz6iCL4iApgTRxxWB8p5gnDMCRJon+maXruU39lpNGSAsgoe/uQucdCFMFHVABr4ojD+m6SYtpx3+t//eqSJNEipWl6br7oPF74XPZuzbZtbYr5KNuZqg0+ogJYE0cc1neTFNO+W0z59z+e9fUbCenC1lf9tm2b5/n6KeaxTfco25mqDT6iAlgTRxzWtyjFlC7gsiyzLJORgn3f13WdJIm8rUHSHXnorjyWoixLfUtY+UK7nie/LmQJ9sFs8qAN+br8b9/3mgJKOjifQXZdt9vtTo5xLIpCmhK1wE755fEffd+naVrXdZZlVVXp84fleXUyp83q5BkidoFN00hXeF3XutKmadI0dVocb7SdJRu2c15lO1O1wUdUnKQPqhR933ddF34NKV9ZfiUpbw9v23b5mHLcEUcc1heUYhYe+V/NjZwOXP99Yl3X6ThCeUyaJC66nPmv25Y8/V/90LatPnpNP/d9H9IRHDK0UXLo8TDFtC/AyPNc8lTJ6vTnyLfkt8ucdV1L8aTW1on6jDqb3unEYRjyPPcTzVtsZ7tGZ+LF25mqDT6i4iQZCK4HXZIkaZqelWJ2XWeHkl8gz3N5OmZVVc6iFt6AeNYPwXIccVjfolZMaa7zK5rJ1Me/mJbXOdR1naZpYOozjmOapnIxrROl+nNmXtI37ZDWR1mLppi2SGVZSgF01U6KqYXpus5JQ8fDHNS+GMMhraQ2n7vudnY69PV0snw7U7XBR1SESJJEjmhJN7Vr4qwlXLx2qXP0T72WFn79c5Y1B0Rh5IjDPSwdiym3OTt1zWTq4+Qifd9r9/rJ1jVJK4V924R80bnFuyiKYRjOve97hqR9RVFol/H48t4zLZJckZ+VYtZ13Ru6Lqdh1XZOyYvd9M/rbmfZkrfYziej6P37959++un79+9PLgqbwQkvRJIkkiPKyBab8A3DYA9nqYVkin3GmXzdVjL2K/pZvtu2rb43cnxpBPWbG+VqUy5Z7aWyvivSqcSkqtQ/+75vmiZJEvv1yR/lTJTXF0ntpCU8d/DAq8URh/VdnmLay1l5t5j+adu99IOT+ki7oHw+lvroRFuxalUlSd7kW9TyPA+8XTqkbpLRh1JT2xTTboHwFFNyMv8Fbroup4a1OZztvx6vvZ2dYVs65/LtPBNF79+/f/v27bt379q2fffu3du3b0k0H9S7d+9+9atfffHFF4Hzc8ILkaap1Dx5nstoGZleFIWMh5Y8b7/fJ0mSZVme50mSFEWRJIlUUDJd5rSDcHSiVEQydCdJEhkXJN8ax1E+2+p9fBnPIzNLhbPf7+XreZ5Lo4NmxrKioii08NIdpF/XusX5Uf5E+QnSZS/Fk8XG9hCSOHHEYX2Xp5i2WauqKnuQyzjFYRh0ot8GJje7jOMoLWH21bf+16URcXx5c67OJvfEpGnq9LkE9uDIlfTJLNP2jMv9LuNh66AUab/f6zxS6WuKqcWTlj8tpPzAuq51Yum9wFfX6Hx9ckMt3M4y7mocx7Zt7WwLt/NkFGly+dVXX+nEr776ikTzQX311Vd//vOff/azn7158+bdu3d/+9vfvv3225n5OeGFkONOOos0S2vbVtM1uR1wHEeZTftJNEvTZ65JGqp5p9R7MlFXp/3y0tAoE2WMjdwdqHPqiizJAuWzjh2yY0ntJa7Tgz/5o+xs9s5IyTvlA/llII44rG9RR7nc6tE0jT8c094ANAyDdG04PTVyX7NMdJrunPuHZCFN0+gS+r63uZRtqxtfarcQTj7n074n7T9ynkypFZzO2XXdMAxOj49N2lTXdXaidgDZDaV3i0/WpFffzjKz7tCrbGcniiaTS4tE86H997//ff/+/S9/+csPPvjg5z//+fv377/++mt/Nk54ISSzlGs8fUyENDTqcx4kCdNuaz/F1KVp37S2IEproh7UThZoVVW12+3s1exkiukPzq6qSto1d7vdTIo5+aNGkw1L+6VMHIZBf2bYhgRHHO7ggd/uo2PPndufJ+9AwsWWb2eNopPJpUWiuQH/+Mc/3r17993vfvcnP/nJH//4R7vfY65b4pFlmYzClNxLU0y52FPjmSmmzuxcMzsppnOdbJ8KHJhiSt/95ML9FNP/UbJSybP9Ef91XXPPUDiOOKzvgVPM8WUUuTOQnPzy6hZu591ud1ZyaZFobsO//vWv3/zmN2/fvv2///u/3/3ud19++WXkdUsksizr+17a/zTFlJ5rnUf6GQJTTOlgsQOEnOdI2CywO3xChWR1+l9aBp3opJjO23fta9LGwx7wYz9KZpNnDDvNq5J500sejiMO63vsFBMPYQdMuXdgxk66gzVRk7GYkhrKwGhJAWWwjdy4Izd6y+2JkvlJiiZzat6md8nog3hlnI98y15M6tedFFD+S9oR5WpTkk6ZWedJ01Qeqyl93/rIufFlDIB9TJv/o2SilNYO9NQCXG9jbx9HHNZHiomb2+12S1oiL24BRVScTnPqlpMk7dvv95rD2Wc7dF1nB6tIV4PMIx3ckszJEO2qqvwh2nairMsfCy5LkzTRKd4wDHbc9mTP+ziObdvKbFIS+19OOuv/qPLwjWj2TnPn8Ro4iSMO6yPFxM1JFF3Q5U1y+ehmbv2hbsFJ0o5b17WME5DhmNJGK+279y7gI+GIw/pIMXFzNooCE02Sy4cW8gAj6hYEOta2esciPSKOOKyPFBM350fRTKJJcvm4/vOf//zhD394fn5++/btycewU7cAa+KIw/pOxNzT09Pq9wBga56eniajy0k0SS4f2qeffqp3i4fMv+OEB6yIIw7roxUTNzcfRZJo7nY7kstXhboFWBNHHNZHiombI4rgo4cEWNOx3iTgdh4yxdzv9ydfLI54xBlFuC+iAlgTRxzW93gppr49wr47GzGLMIpwd0QFsCaOOKzvwhRzv9/LQ3GbpqnrOiTba5rGf6ftufI81/bLYRjIMh8CVRt8rzMqpPqiEwbre51HHO7rjBTTeUu1PAtXPrdtKw/FnVdV1UWFHHUt9gW44zgWRcHT0eJH1QbfK4yKpmnkndpOPQas4BUecbi7M1JM581gNsUcV3ldrL4MV/V9T0Nm/Kja4Lt6VOz3+6ZpsizTd14fm62qqrqupQdGcr558orthcUry1Lrz77v5wu5ROAFv9X3vV+7jsGbFA+Behjru06KKa/5GsexbduiKMqyHIbBvl5WpvsVX1VVMr8/0W/ynKw3z61MsT6qNviORYXz0upzhVQIeZ7rWtI0PbnGsiwX5lj+O75vWnFdsPCZr1DHbgP1MNYXlGKWZVmWZVEUkg5KRihX9pJ35nmuFaj82TTNeFg3dV3njMXMskzGJJVlqQmlzUqd1HOypluh9RQLUbXBNxkVwzCENCvOCMmHbEUUkmIu5Fdl4y3zNmmjPesrbdvOjGIixdwG6mGsb1ErpqSYTgXddd1kleSkmNKuKZ/1IURO57ufkvqLXX4LEW6Nqg2+yaiYzI2apnESoL7v7XWp/bq/BOfr9vZE7X6RmkcujJumkQ+yoqqq/BVJ1uj0LE9OHJd1v/R9Hz5nVVV939sqUTaUZu0ySEAq22EY7IX9MAz+dh7DNikeAvUw1ne1sZgh023dp62hzjzSAipCWjG5wo4fVRt8zq2EUr1ox4hM13RwGAY90nXUoF/VOBeck1/PskyW37at7THX52M4F8lFUdiGVamjJEvT1Ul6p8t3yuCnaPOthpZ0H52crSgKSYvrutYCaMltu6Yts3YZpWmq6bVOdOYXsonGcdzv99S9j4V6GOu7W4ppWzHHlwFYzrB659EeVVU5nWiT1TdiQ9UGn59iaoYn9YzNgdq21ZZF/eD0CA/DYNOjY19P01Sub53BkWmaOlOEk0jpn9Ii6M9zbH5r8t6ai9kGXa0kbWasSbNNbXVOWxU76fXMJh25vH801MNY3+WPXl+YYo5mLOZ+v9dThbYx2In2K/ZP54IbcaJqg8+PCud4z7LMz8PkPsKmaZwe4dG7BJ38+rGH+B5rVnSeWTE5zFFuT9S+l/lWwNHL25azq5Aa0rbajuNY17XUyTa19VuFR+8H+pu0qir5mYGPQ0Y8qIexvssfvS7VljMQU1oL5Bxg2yCPTZfmBG1gEFVV+ROFdtOMUzdpIk5UbfD5UTHf6z0eZk5OFjV615+To7SzLJu8uedYs2JRFHb+ybR1cuKxUs2s6zK250eTV2f8qJZQC2PbI20J54e/M/D9oVEPY32P9wLJuq6HYRiGgS7yRxFhFOHu/KhwBsbYhEYuOO2TK+QuFs3V/KZB/+vj8STpWJ+vn8VqIbV5z6aY/u3wTqnkeZyT6/IVRXHyPUC210gf5WFHEOlnm4zqnLaXfH7gwXi49Rbe+I/1UQ9jfY+XYuLhEEXwnYwK6Yq1eY/2hMgHyY3k8eDyp83enK/LO29tjmiXqSmXnS63ztiOF7nXR7pZdE5pEXQmKvsGsrPGjoffSy5rlx+iy9ffrrmgtPvKzEVRyJzSj6TPopc5AzcpHgv1MNZHiombI4rgeyVRoc8GapqGgT24o1dyxCEqpJi4OaIIvtcTFSc7u4EVvJ4jDvEgxcTNEUXwERXAmjjisL6HTDH1bUB4CHFGEe6LqADWxBGH9T1eiqlj6h/uqWyvNi2OMIpwd0QFsCaOOKzvwVJMfXXbOI7DMNwuy2zb9tyHwMkb1fwR/XJ7ZpZlkzecvgaxRRFiQFQAa+KIw/rOSDH7vp98avESZy2wbVsnS7MPBLm6C16P5r+Vzv4XKSagiApgTRxxWN/l7yi/irOaIf23Yjivd7suUsxroWqDj6gA1sQRh/UtSjHlzRCSV0l7ZNu2+kII+yxiebOwfZBv3/dVVSVJIg9StuMU5cnA/iuDJ3O+wESw7/skSUKaPJumkecSOy/5lV8qS9jv9/qiEfuEZHnjiL6z2C7WTzH7vvcfbrxJVG3wvXnzZocH9J3vfOfeRcAl3rx5c++DHq9OUIop6VFRFJJmSapku63ti90033LebCYfnM7uyRf4Ts45OfM4jkmSzP8EFdKIWNe1prY6FrOqKvuyOF2a/5P1jSOj9+ZiJ8W0L2eTxDTwVzyiHSkmsAmffPLJj370o48//vjeBQHwAC5vxbS3tkzmW5piOi8cs7fROFmjzUpH74XCkynmuTflzJssm52oOeixFNNuE9sQ66SYdk55K90Vf0VsSDGBDfjLX/7y9u3bb7/99pNPPvn9739/7+IAiN2iFFM/z6eYzghF+0U/xZSXBetriO3/LukoD2TbRHXJdhWTP+pYiunklM6f8lph4Y8K2BJSTGADPvzwQ+lv+fLLLz/66KNvvvnm3iUCELVFKabeD768FVPGYnZdZ2/fcR4kaTusRV3XdsnLXbcV05bNTzHtb9n2IzNJMYFH99Of/vQXv/iF/vnb3/72hz/84R3LAyB+lz8X07Yy2k7zNE0lYZKxmzLRjrC0LXZ6k7je8qKL2u/3fvrotFmG9y93XRfSpa69213XJUkiJbGprb2ZSeZs21bntGmlU1R/LGaWZZpYX/1W/aiQYgIP7Z///Of3v//9r7/+Wqd8++233/ve9/7+97/fsVQAIrfo0et683VRFJokyWPGq6rq+14zM8kXpWvYWYjTxjm+3Io+eZ910zQ6c1VV4ZlZ+HPa67qWJsamabSZVvqy67q2zY1FUeR5bufs+77rOplT7/WRR69LSmrvnR+GQSZuO78cSTGBB/eDH/zgr3/9qzPxiy+++Oijj+5SHgAP4Tpv95l5HuTVSfY2DMN1u8hxO6SYwOP69a9//eMf/3jyvz777LPPPvts5fIAeBRXSDHl+Y4kfDiGFBN4UN98882HH374n//8Z/J/v/766w8//PDf//73yqUC8BAe7B3leEREEfCgTj6f6E9/+hOPyQQwiRQTN0cUAY9IH4Q5PxuPyQQwiRQTN0cUAY9IH4Q5j8dkAphEiombI4qAh+M8CHMej8kE4Dtx7n/z5s0OWObNmzfrRDOAq/AfhDmPx2QC8NG8BAA4MPkgzHk8JhOAgxQTAPA/Mw/CnMdjMgFYpJgAgP/54IMPLh4V88EHH9y7+ABiQYoJAAi14+49AGGoLAAAoUgxAQSisgAAhCLFBBCIygIAEIoUE0AgKgsAQChSTACBqCwAAKFIMQEEorIAAIQixQQQiMoCABDq448/vncRADwGUkwAAABcGSkmAAAArowUEwAAAFdGigkACMVYTACBSDEBAKG4oxxAICoLAEAoUkwAgagsAAChSDEBBKKyAACEIsUEEIjKAgAQihQTQCAqCwBAKFJMAIGoLAAAoUgxAQSisgAAhOK5mAACkWICAADgykgxAQAAcGWkmAAAALgyUkwAQCjGYgIIRIoJAAjFHeUAAlFZAABCkWICCERlAQAIRYoJIBCVBQAgFCkmgEBUFgCAUKSYAAJRWQAAQpFiAghEZQEACEWKCSAQlQUAIBTPxQQQiBQTAAAAV0aKCcTi888/3035/PPPmYd5mId5mOfieZ6fn0esjhQTAABs2Y4xxPfARgfuz15zAzEjVvGISDHvgo0O3B/VHx4FsYpHRNzeBRsduD+qPzwKYhWPiLi9CzY6cH9Uf3gUxCoeEXF7F2x04P6o/vAoiFU8IsYQ3wWVBXB/nLbxKIhVAIGoLID747SNR0GsAghEZQHcH6dtPApiFUAgKgvg/hgnhEdBrOIREbd3QYoJAAC2jNb3u2CjAwCALSPFvAs2OgAA2DJSzLtgowP3xzghPApiFY+IFPMu2OjA/VH94VEQq3hExO1dsNGB+6P6w6MgVvGIiNu7YKMD90f1h0dBrOIREbd3wUYH7o/qD4+CWMUjYgzxXVBZAPfHaRuPglgFEIjKArg/Ttt4FMQqgEBUFsD9cdrGoyBWAQSisgDuj3FCeBTEKh4RcXsXpJgAAGDLaH2/CzY6AADYMlLMu2CjI0bPz887bNfz8/O9Q2wcCTOsIpJoHwn41+qOEUiKiRjtuOLctEj2byTFwLbFE2bxlARruuN+J+AQI6rCbYtk/0ZSDGxbPGEWT0mwJlJM4ABV4bZFsn8jKQa2LZ4wi6ckWBMpJnCAqnDbItm/kRQD2xZPmMVTEqyJFBM4QFW4bZHs30iKgW2LJ8ziKQnWRIoJHKAq3LZI9m8kxcC2xRNm8ZQEayLFBA44h0TbtqVR1/XJJTRNk+f5zQo4juNY13VZlvqnlG2/34cvoSiKLMuWlKHv+zzPsyyrqqqqqiWLWlMkp7qTxZBdrNYpVaD9fl+WZZqmdmKWZW3bXmX5ctANwyB/VlVVluVZC6/r2ineBeQYKYrigcLbEUm0j8dLMgzD5J6ajLE1tW0rASAl0fCT4Aw5EdhFZVnWdd2S8lRVlWVZnud1Xfd9v2RRayLFBA74h4St6fI8L4pifgkr1Ixd1+12O6mz+r7f7XbnZiFd1y0ppJwYJKl1Tuf7/f6sZNfXNM2Sr8+L5KQbWIwkSQLPTDfdaL6u65IksVOSJAlMxUKKmiSJhnSSJBfEqlO8c6VpKlve/6ULN/W1EvEQkUT7eLwkZVnudrvJnMnf8ivTmjxNU43ALMsuKJWG02X0Ome/3zuLWhhOy6vreaSYwIH5FLNt2/vWekJSTKl0qqpaP8Usy9Km2rbVtqqqhdfrC5tX50Vy0r16innTjeZbcvoPKWqSJDKbXEGtnGI6R4dtUh0Xb+o191Qk0T4eL0mWZWmaTl6cRJViakmSJFk/xbRrbNvWXuQsDKfl1fU8UkzgQGCKKd2XkmZVVaX9Jna6TmmaRrpamqaxlanTAyhdMEVR9H2vfYXaU7/f72V+qRT0HCxX1TbFlJ5rOSnK12W9wzDo6uQkKlOcTh/potV2BVmpJJF1XWteK1+3X5R1JUlSFIWuaPJH2RXZtcuK5Oc4SbP9Uc7Evu9lsfKtqqqkb2ty8EAkJ90LUkz5UU3TyGbUsAnfaH7Q6jJlA9pIHl/2ndNMInutaRo97dld7M952f7VE7lEmk34bHzOlD9JEjlknPTF+VGT8dn3fZIkfvuQX36NtLqu7fGlS7Y/qqqqoij06zY4nYPOmVhVVdu2ciTKeuXDyRasSKJ9nE0xy7J08iQnxmwdqFvVzqk7/dgxImQDOnXI5JaXsCmKwqaYfd/3fW/TzdELp2O1vaSYsi5bAKcGPhZOk10Ek+HkH+N2RfaXTlbXkz/KmSi/a/LENHpIMYEDMymmdFLI0dt1nVRAeZ5LO6J2q2nFJORPqS5lPI2cdSR76Louz3M9XUnuKFOyLJORQHmeywIlL+z7vus67a+RE7AsQfqvm6ZpmkbmlBVVVSULqetaviUrKopClqnne2lRkIlSPfV9L9+SYUCazsq5tigKrTGl/PLFruukypv8UbIimU22iSxBamGpjjW18n+UFlUmysK7rpPPUmzZLyH79y4ua8WUWNKzr2z58I02GbT6Z5IksliZuSgK2ap5nmsrtXyWiXqi1V1si7pw/8qJfBgGGX+mB5Qfn8fKL9dgUlQtgP+jjsWnnH3zPLcn2snyS2GknHLKlxXJwWVzcTly9cC328r5UeM4SkWhO0iSA61/5Ig+2cUZSbSPR0rSdV1Zlk5rpR9jUgfK/pJo0SDxY2zyGJFN1zSNrEurrMktLxPbttVrG2lqlQts3cXjVDhN1vbjSy0tyZl+XQJeyq8RPhlOskBbyPFIOE0e47oimV9CerK6nvxR48vFlR5NEnv+iSlwv68jltAHrMkUU05XWZY5TTLSUjKOoz26ysOxmNrwYJs/5dwpMzgpqW2S1PpRvquNiFKPSOUix7mmfZpXlS9Nj3a9+qet1vVzXdc2G7Az7HY7qZjsJbgMY9esTkx2Cfk/Kssy+aBZr67L6RWd/FF2NrtGW6ePUyI56V6WYpamgdyebwI32jgVtHru0QabruvkysQWQ9v2dI3+WExb1IX7V0/q0solX5mMz8nya5m1bHq55fwo/ezEp3zQ66iZ8stKtWCaoEtvpp98O9vt2EGnH2yLr+ZSeZ6H3PMRSbSPR0piW+nk5xyLMUn4xpe7cGTiZIxNHiNy25Z+S9Y1ueVttqqBJ1+XlEuvGSbDabK2Hw+PVh0Y4Fww2xmccNLyaOeVXa+/VZ1jvGka+fmSoJemA8Gpro8dI3Zossa/f2LykWICB+Y7yi+YfqzSkbpMblp0Ukw/RZPKSKtUufrXS1WtNeRaWbJhraeOpZj2ulnn0fzcFZ4AAA+pSURBVGTa9gf5+YQl9bttGJhMMZ2Jkp7aK3Vdl7NVJ3+UvRE1NV32sli5232ytJGcdC9OMW17s34O3GjjVNBOpmjdy0gMIcWw3z2ZYi7cv5JZSpOJrncyPmdSTKdskz9qsvCWfGsmm3f2hZBrSCn8fIp57KDTHyK9B87Xj11BOSKJ9vFISWT7yBaQ3zgTY5KG2tx6MsYmj5HJ/XssnPTrNsXURk0t1bFj5FiKqQWwpbJfnzy0HdKTZiu3yRTTDw850chPnkkxjx0jeh1Y17Vdu3Ni8pFiAgfWSTHtXdjO/JO1oRzYtvKVi3W5GdOmmP7trmelmJP3y/v5hDMs0qlAT6aYOk7AX/hkCjJ5D69UtdKu4E8/NkwtkpPuCinm5EYLTzH92LZBO59iLt+/clKXe9psiunH51kp5rHMzNnOMjhE/5TBasfKP07lBKm5heVkijl50OUvnCVLRnXyuRYikmgfj6eY8kH7ZGdiTObRrxyLsWMppq0QpO6a3PJ2g9sUc7/fJy9DL/wqVJ2bYk4OdfDDyZZTer31z5AU03Z5z7diHjtGZGCGNOXa6c6JyUeKCRxYJ8W0Dz+S+fUse6xBJTEjviXF1O4hrTVK0yUq9weMASmmdhjZ++VlqI2uzk8xba1n/1d7fJwZ7I/yTyR6AtB1yd0bx36U9NHID3f6aJxmM0ckJ92rp5ghG20MTjGdVWvLsZ4U7ZAyv6jL96+0i0jDlZZ5Mj5Pppi278//UZPbWS7b7CaaKf/onbb93samaTSZ0CZ/OUCOHXQS3pLdOqNTjj3lxxdJtI9TJZFKTD5rVTYTY3rJoV+ZjLHJY8TmWHKfynhky9vFavKk3UF6q6XM4IfTTIqpIaRF1VE9MqftNHdSTNtN5FxgOOE0Th3jEoF24VoYv7qePEakoVfyb+fqPZl9WhkpJnDAf/S69I84x1VZlnLUlYd3hvrTbX+Z1F/SkyvzSN2XJElRFPYWP//RvqnpDpa1dF2nPThyna2r0yerSzWq65Xlt20r35UqIzVDgmRgqHxdRyzpfYvOiVbvkLCllYtsbQw49qNkLXJZnBwOMJKv2ynOjxpfrp5l4c5ldNd1x3rJ/f17L4GPXteNPL70kaVpKvfV2p0+hm00PzhlmboN7e1c8lm+rjtOAkkmStnGI7t4yf6VXyf/So+zHoBOfM6UXwPeKb/zo47Fp5TZuRr0y69PCJeZdR5tgJTC24NX1p6ZJ9X7B53UD9pZYTOMMbiXfIwm2kevJDaYx5fLQu2K9WNMpIdPsfBjbOYY8Q+HcWrLj+Ood7TIoqQ8UuH0fS9FlVDxw2mytrfTbTjJXpZQkYnHwkmnFN4rM5xwmjwxSUnKl7vZbMbpVNeTP2p86WqQLoXEG3x/rJfc3+9riiX0AWvNQyKwKULuVHBqlnkzx3xIGcLfHrHkPRMzhZz8L+fZhPZJH9quII1eMw9zieSke4tinNxoF5jcv4HLXLJ/LyhV+JzLw3vhFpicbtcl/ZL6Z2qeCaCNcCEiifbx/JKc3EQzs6282PBwujjsJVk8K5x8Z9XVdmZ7D9ZongMfcmIixQQOxFMpqyRJkpc7LiFkjLl0I2ZZJhfl0rM204Q5RrN/IykGomXbQSWn1MEh4QuJJ8ziKQkuoHFohxyEnJhIMYEDVIXbFsn+jaQY2LZ4wiyekmBNpJjAAarCbYtk/0ZSDGxbPGEWT0mwJlJM4ABV4bZFsn8jKQa2LZ4wi6ckWBMpJnCAqnDbItm/kRQD2xZPmMVTEqyJFBM4QFW4bZHs30iKgW2LJ8ziKQnWRIoJHKAq3LZI9m8kxcC2xRNm8ZQEayLFBA5QFW5bJPs3kmJg2+IJs3hKgjWRYgIHnp6edtiup6ene4fYOBJmWEUk0T4S8K/VHSOQFBMx2nG1vWmR7N9IioFtiyfM4ikJ1nTH/U7AIUZUhdsWyf6NpBjYtnjCLJ6SYE2kmMABqsJti2T/RlIMbFs8YRZPSbAmUkzgAFXhtkWyfyMpBrYtnjCLpyRYEykmcICqcNsi2b+RFAPbFk+YxVMSrIkUEzhAVbhtkezfSIqBbYsnzOIpCdZEigkcoCrctkj2byTFwLbFE2bxlARrIsUEDlAVblsk+zeSYmDb4gmzeEqCNZFiAgeoCrctkv0bSTGwbfGEWTwlwZpIMYEDVIXbFsn+jaQY2LZ4wiyekmBNpJjAAarCbYtk/0ZSDGxbPGEWT0mwJlJM4ABV4bZFsn8jKQa2LZ4wi6ckWBMpJnCAqnDbItm/kRQD2xZPmMVTEqyJFBM4QFW4bZHs30iKgW2LJ8ziKQnWRIoJHKAq3LZI9m8kxcC2xRNm8ZQEayLFBA5QFW5bJPs3kmJg2+IJs3hKgjWRYgIHqAq3LZL9G0kxsG3xhFk8JcGaSDGBA1SF2xbJ/o2kGNi2eMIsnpJgTaSYwAGqwm2LZP9GUgxsWzxhFk9JsCZSTOAAVeG2RbJ/IykGti2eMIunJFgTKSZwgKpw2yLZv5EUA9sWT5jFUxKsiRQTOPD09LTDdj09Pd07xMaRMMMqIon2kYB/re4YgaSYiNGOq+1Ni2T/RlIMbFs8YRZPSbCmO+53Ag4xoirctkj2byTFwLbFE2bxlARrIsUEDryeqrBt23Ecm6a5d0FWFcn+jaQYK3idYRaJeMIsnpLcmoS6hD1IMYEDVzwkhmGo6/paS7OLXb6Qoih0afr5FoZh2O/3537rWAXd9/3CZCWSU91rC7OmaW6aZcYWZpGIJNrHa5ekbdsLdvcK6rrWoMrz/KbruiCLnTlMbrRJSTGBA9c6JIZh6LouSZL52fq+T9O0bdu+78uyDMn20jQty3JJ2YqisAlEVVU3uube7/dFUXRdd9a3uq5L09Sf3vd9XdeT/xUukpNu5GE2DMNutzt3xzmcMLvdlUyEYRaJSKJ9vF5J9vu9BPPJ3V1VVZ7nfd+3bZtl2cn58zzPsmxJ2ZzLdTnWlixwRtd1F5Q2z3N/O4Rv0guQYgIHnENiYR1x8tw/jqOtKfI8P5ntLWxeGobBv7xeWLfOKMvygprrWHmOpQXhIjnpxh9mfd8vKZIfZjc948YWZpGIJNrHawd8SD7UdZ2uZRiGkB26sGrN89xZwk0bMi+otGcOE1JMYA33PfeXZalrvFFP0GSbpV85HnNuLXzy3G9/pn4mxTzLLcJs4el2MszCT4qPHmaRiCTax3unmGPYMbKwyvXDqa7r8EEs517UkWKeWPW9VgzMmK8Kpdpyuhrrui5fONWEX68VRSFf1+PZ1hRZlvV93/d9VVXyuaoqPfj3+33TNH5doGu31dnkxPFIxRTeCJRlWcileVVVZVlKX5UuuWkaLZVO0XO5nZ5lmfwpXV262Mlzv2zSwJ8QyUn3gjDTTef3OF83zORPf5nLwyz8pBhbmE3ukfhFEu1jQIrpB5Jucz+6/DpQK2HdQTbFlL7ycRybppFO87qui6LQgJTpTqn8ZY7HI6Hvez82nDR3Rtd1u93u5JWV9MXLBtHCy6rlQJAw3u/3OjZAOsFlTplnsvyBp5VzkWICB+SQkCOwKIo0TeWDHPzHTlTywa9QnPN0lmWyHDuSRsZWCnuTQZqmcmw3TWOrHqcusFWArq4sSzvq3H79WIoZWBWG3FfRtq3WX5r52Z5T+3ly6yVJImsZhsEW2D/3Z1l2slHKiuSke26Y2V5mP5m+RZg5y7xKmIW3lEQYZv4y4xdJtI8vJZEMyQa87IvJ6LLb2QknJ5DatrU7Wv5Lgt9Pp+yf/sXS/DLH45EwmU2eNWIy5NCYrO6cq0f9OX6Z7W90Lqv808qxQ/sspJjAgZmrbbmonfxW27Z1Xed5PpNiHhsPdKwOOtZV59QFJ5cpV67zq/OzliVsk5Iu2dZZoyn25LnfFtJuw5lzvyzzZGdTJCfdC8Jsv99Lv5ufqN0izJwU8yphdt0hv6uF2QVdrpGIJNrHU62Yx4JQbr2SlNSZ3x4Ck3exHGtBPNYs56SYIcu0kbCwFTOEc2hL9HZdZ9erHRfHUkx7yNiyOZt05tA+CykmcGCmKjzW1JdlmZzV5lsxjw3wOnbenckJbF0wecKTy27pDO26zjYILRyLGcKW0J77J6uwhSmmpJX6S0+WLZKT7rlh1ve9tk3Ot2JeK8ycuLpKmF03xVwtzOQsflaYRSKSaB9PpZiT0ZXnuWY2862Yk63jMynm5B6cT7l0mTORsHAs5klOWGqK6dQe10oxjx3aZyHFBA44h4StIPq+tz0j0tto25xOdpQ75y35sDDF1MxDyGdnoq0gVrij3LYk6VV1Xdf2UthvXmrbdvLc72w0P8XUzyHj5SM56Z4bZpMtduoWYXas811cEGZXv6N8tTBz9ggp5gVmAn6ciq7JFjvl1IFVVdkFHrvgF4Ep5uQy5yNh4R3lIWmcv02cMR6TF6J24I2tRpz2/pnTCikmcB3zh0RRFPryBvlgj/CqqoqisBWTc57W898wDHoiTNN08gAO7CiXWk+qA12mbfTy+ziWPBdTBlHNzyPbZL/fy1AknV/Xa9eYpmnTNDLySUcapWmqc9qBg36KKf1o4+EmnRHJSffcMNMrGRnNVte13Sy3CDNnmcvD7KwbZWILM21R0z3yECKJ9vFUSSajSyNW7sWx9arfxKgjC+u6luU0TTMZQs5YZDvdSUn9ZY6zkbDkuZhN0+jI4Bl6fpH78yS8NVm0l08ycKvrOrl1T76lv3G/3zvpr39amTm0w5FiAgdOHhJyN6JzzV3Xtd6+pxOli6HvezuzjC6ys8k8dhXyLFyZ7lQ6k8uUAvhpYtu2x3JHrV/ObVvqui6wS71pGr/8Xdc5t5VIGuQ3QMqGcjbd5GYZhkHWFVKqSE66F4SZjRw9GdwizI5NXxJmk1+c//mxhZk/Z/wiifYxoCST0SVXBeNLu+Z4GJzO3nRyvq7r/B5e+a5/LBybPnlFMRMJ9trv3IcPBF669C+vnpo53rXwklnqnJqy2+08v0kXvpWDFBM4EE+lfGtSd9zi3YMxi2T/RlKMFfCO8juKJ8ziKcmt8Y5yixQTOPB6qsLXKZL9G0kxsG3xhFk8JcGaSDGBA1SF2xbJ/o2kGNi2eMIsnpJgTaSYwAGqwm2LZP9GUgxsWzxhFk9JsCZSTOAAVeG2RbJ/IykGti2eMIunJFgTKSZwgKpw2yLZv5EUA9sWT5jFUxKsiRQTOEBVuG2R7N9IioFtiyfM4ikJ1kSKCRx48+bNDtv15s2be4fYOBJmWEUk0T4S8K/VHSOQFBMAAABXRooJAACAKyPFBAAAwJWRYgIAAODKSDEBAABwZaSYAAAAuDJSTAAAAFwZKSYAAACujBQTAAAAV0aKCQAAgCv7f+DtekUdpz97AAAAAElFTkSuQmCC" alt="" />
源代码
抽象折扣类
public interface MemberStrategy {
/**
* 计算图书的价格
* @param booksPrice 图书的原价
* @return 计算出打折后的价格
*/
public double calcPrice(double booksPrice);
}
初级会员折扣类
public class PrimaryMemberStrategy implements MemberStrategy { @Override
public double calcPrice(double booksPrice) { System.out.println("对于初级会员的没有折扣");
return booksPrice;
} }
中级会员折扣类
public class IntermediateMemberStrategy implements MemberStrategy { @Override
public double calcPrice(double booksPrice) { System.out.println("对于中级会员的折扣为10%");
return booksPrice * 0.9;
} }
高级会员折扣类
public class AdvancedMemberStrategy implements MemberStrategy { @Override
public double calcPrice(double booksPrice) { System.out.println("对于高级会员的折扣为20%");
return booksPrice * 0.8;
}
}
价格类
public class Price {
//持有一个具体的策略对象
private MemberStrategy strategy;
/**
* 构造函数,传入一个具体的策略对象
* @param strategy 具体的策略对象
*/
public Price(MemberStrategy strategy){
this.strategy = strategy;
} /**
* 计算图书的价格
* @param booksPrice 图书的原价
* @return 计算出打折后的价格
*/
public double quote(double booksPrice){
return this.strategy.calcPrice(booksPrice);
}
}
客户端
public class Client { public static void main(String[] args) {
//选择并创建需要使用的策略对象
MemberStrategy strategy = new AdvancedMemberStrategy();
//创建环境
Price price = new Price(strategy);
//计算价格
double quote = price.quote(300);
System.out.println("图书的最终价格为:" + quote);
} }
从上面的示例可以看出,策略模式仅仅封装算法,提供新的算法插入到已有系统中,以及老算法从系统中“退休”的方法,策略模式并不决定在何时使用何种算法。在什么情况下使用什么算法是由客户端决定的。
认识策略模式
策略模式的重心
策略模式的重心不是如何实现算法,而是如何组织、调用这些算法,从而让程序结构更灵活,具有更好的维护性和扩展性。
算法的平等性
策略模式一个很大的特点就是各个策略算法的平等性。对于一系列具体的策略算法,大家的地位是完全一样的,正因为这个平等性,才能实现算法之间可以相互替换。所有的策略算法在实现上也是相互独立的,相互之间是没有依赖的。
所以可以这样描述这一系列策略算法:策略算法是相同行为的不同实现。
运行时策略的唯一性
运行期间,策略模式在每一个时刻只能使用一个具体的策略实现对象,虽然可以动态地在不同的策略实现中切换,但是同时只能使用一个。
公有的行为
经常见到的是,所有的具体策略类都有一些公有的行为。这时候,就应当把这些公有的行为放到共同的抽象策略角色Strategy类里面。当然这时候抽象策略角色必须要用Java抽象类实现,而不能使用接口。
这其实也是典型的将代码向继承等级结构的上方集中的标准做法。
aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAAj0AAAF5CAIAAAD70gyxAAAgAElEQVR4nO3dP4jc1hbHcaVZeOBiCweckMIhFhgSwhACcaGQVOEVKd5Nk0AagwiYVK9Q4d6IVMHNQIoQXqEi6YKK4FJFCjcC4+qhyp1cuphiSr3i4IueZnc9c1fz59zz/VTrWe1YZ3733jP6szvJAACAHsmxdwAAgB3QtwAAmtC3AACa0LcAAJrQtwAAmtC3AACa0LcAAJrQtwAAmtC3AACa0LcAAJrQtwAAmtC3AFh0586d9Xp97L1ACPoWAHOapkmS5Pfffz/2jiAEfQuAOQ8ePEiS5Lvvvjv2jiAEfQuAObdu3UqS5Pz8nFOFGtG3sK3FYpHYsFgsjv1iY4+apvnyyy+TJPnuu+84VagRfQvbShIro8VOpTY9ePDgl19+SZLk999/51ShRsxPbMvOam6nUptu3br18uXLJEnW6zWnCjVifmJbdlZzO5UaJCcJh9cpc6pQI+YntjXXat40jf96tVr1fX/hZnVd7/psc6FvRUxOEg6vU+ZUoUbMT2xrrtU8yzLfbNq2zbJsc5uqqtI0LcuyLMuiKDY3kG8Nw5Cm6TAMy+XSOTfL7g30rajJScLhdcqcKtSI+YltHaxvVVXlnFutVsMwFEVRVVXXdZvP45zrui5N067riqJYrVZzHXvRt2LlTxIOo5Q5VagO8xPbuv5qLg0mTdOiKPI8d87leS7/zLKsbdvh9ZGTc64sS+dcURTyhRxd+SeR460sy9I0zfO8fE263TXRt2LlTxIOo5Q5VagO8xPbmvF4q23buq7LsvTHW+OzfL5RSUub9C0vz/PlcpmmadM0eZ7neX7ZpbJd0bdide/ePTlJOIxSXq/Xd+/ePd5OYWfMT2xrxr4lLeeyvtU0TdM0cuAlx095nldVNd7AOdc0zWq18j844yUu+pYFpKwXyWFb15/nTdPImb22baVj+fOEcnuF6PteGptzLssy59y4abVt669jlWWZ57n/1uYxWRhWNAtIWS+Sw7bmPU/Ytu2Fx1tye0VVVXme13WdZVlZluO+JScY/fUtuUjmH7nwDo5dsaJZQMp6kRy2dZi+1XVdWZZynrAoiqIoZJvNY6m+7+Vni6KY97e4WNEsIGW9SA7buv48X61WcrdF27ZyGlDuJJQjJ7+ZHGzJUVSapnK3hTzit5FTjnILonzXObdcLrmfEFsiZb1IDtuaZZ63bSu/R1zX9fggyf91jLqu/W2BcjPh5BnqupZf6po83jQN17ewPVLWi+SwLTvz3E6llpGyXiSHbdmZ53YqtYyU9SI5bMvOPLdTqWWkrBfJYVt25rmdSi0jZb1IDtuyM8/tVGoZKetFctjW2dlZYsPZ2dmxX2zsXULfUovksC0789xOpZaRsl4kh23Zmed2KrWMlPUiOWzLzjy3U6llpKwXyWFbdua5nUotI2W9SA7bsjPP7VRqGSnrRXLYlp15bqdSy0hZL5LDtuzMczuVWra/lOf9VJ0J/xeod/qoua7r/J+rvsI221zTarW6/v/C/MS27Kzmdiq1bH8pp2nqP08uz3P57IIrFmv5kIT2/8nnHlz45PK4fFz4lrvkPz/oim26rkvT1PdF+anxpwVdJsuyC3f1QlVVvXFP3oj5iW3ZWc3tVGrZnlJumiZJEn/I5dd0+Wxuf5DknHPOpWmavVaWpXxwj5DvTp58/El10mb8t6qquuIITPrW1XteVdX4Y/D8Pr+xZNmT5XL5xi2HYZDPyZs8uOvH5jE/sS07q7mdSi3bU8ryEab+n+OP6pb+NN44TdNxs3HO+Y3LspwcTvV9L31Oel6WZXJg5/853n7Swzb71vhkZtd18mGty+WybVt5Hvnv/PP447D2Is65uq7HB4tZlvmflc+AFWmalhvSNN3p5CrzE9uys5rbqdSyPaU8WYLHfavv+/FHmzZNM+klWZb5D0Qd/6B/JEkSf4ZtfOzVtu3kk1Tlu76rpWmaJIkbSZLE97m2bX07KYoiSZK6rqWdbG5fFMX4uFA2mzwifKuTg84LG56YnJ98I+YntmVnNbdTqWX7SLksyyRJxv2mKArnnKzOy+VyfGknz3M5hej73Pi74x4mG8uP+26UpqnvK3IkNz7bNu5qw0XHW+P/SzrH+OvVajU5FrziotQbr1dt9uBdn2GC+Ylt2VnN7VRq2ewpy1qfJIn0KuecfCGHMlVVSffyzcA3Hn8UNW4V46Vcflwe9M9TFIXcNCFn9iYXja7Zt+T46bLtx3yf849MjvyGUd8qiqJpGn8u0Z9QpW9hX+ys5nYqtWz2lOXWQelS/kF5ZHPjqqr8kZlsIG3Pb5Cmad/3k240PiPnO6LI83yu4y1pvXVdjy+YXdZa5Gzn+DKbnGYcb+P7lhws+hOS/j+lb2Ff7Kzmdiq1bN6Um6aRVX7St8YtYUyW+HHfkrvyxg1ADsXGV8uu6FtyKOa39Lew+4Mz6Q3jS0rjvuWvfsntHvL4+Ab3y1qLHFOOX4fNesd9y78441eGvoV9sbOa26nUsnlTHq/vm2fYJjfLdV3Xtu2kbw0bt4NP7nQf/v88odxAOG5F4/9lcufepMmV///rXJvnCf2T+IO2y1rLhf1ysg19C0djZzW3U6ll+7ufcNK3nHMX/oLwuG9VVTVuKnmeZ1nmj13k7j55fNx4/Dk3Mb4Vvq7r8V0Vm+cJl8ulb5OX9a2+76UXygHZZmvZPAsqe35ZpeN798cHdvQt7Aufd4yYJIfqW7K4j3+ZSb7wF3vkUpa/YWF8cm98p/vkcTE55Lps9d/sW2OX9a3JBpt/8iPLsssuZV344OR4640Hc5ehb2Fbe5rnJ8hOpZYdrG8No9847rrOL9b+t5ou6yjlxq8eD8MgTUuex58DfONf/Julb00ezPN8c/cmpw2Fb1eX7Sd9C/tiZzW3U6llh+xb/k9djA+h/Gq++bct/HHY+H7CpmnGN0r4H5ff63LOyaWvC/fqjX0ruei+DLmlsLzoj06Nm5ZsVlXVcrlMkmTzz01d9vtbcnZUftOZvoW9sLOa26nUskP2rWEY+r6X+wN937riLxvJ8c34TxFKnxgfr0z+Ekee52maXvaXdt/Yt8YnJMdP0ve9dDJ/FCWFTE4Pyg5L89t8/it+71hOom5eErsa8xPbsrOa26nUsj2lPL7fYVPTNJet4BPjo5YLO9zm6bgrNE1znU8PGf/sZX+9t2maK751xZPvdKQlmJ/Ylp3V3E6llpGyXiSHbdmZ53YqtYyU9SI5bMvOPLdTqWWkrBfJYVt25rmdSi0jZb1IDtuyM8/tVGoZKetFctiWnXlup1LLSFkvksO27MxzO5VaRsp6kRy2ZWee26nUMlLWi+SwLTvz3E6llpGyXiSHbdmZ53YqtYyU9SI5bMvOPLdTqWWkrBfJYVt25rmdSi0jZb1IDtuyM8/tVGoZKetFctjW+fn5bJ8ovLUbN24c/j89Pz8/9ouNvUvoW2qRHE7X119//eGHH37yySfH3hFEiL6lF8nhRP3999/vvvvuer3+6KOPfv3112PvDmJD39KL5HCibt++/eTJk2EYnj179vbbbx97dxAb+pZeJIdT9PDhw6+++sr/88cff/zmm2+OuD+ID31LL5LDyXn16tX5+fnLly/9I+v1+ubNm8+fPz/iXiEy9C29SA4n57PPPvv5558nD/75558ffPDBUfYHUaJv6UVyOC1//PHHnTt3LvzW559//ujRowPvD2JF39KL5HBa3nnnnadPn174rRcvXty8efPVq1cH3iVEib6lF8nhhHz//ff379+/YoNHjx598cUXh9odxIy+pRfJ4VQ8f/781q1bVx9Ordfr999//6+//jrYXiFW9C29SA6n4uOPP/7tt9/euFnTNO+9994B9gdxo2/pRXI4CY8fP/7000+33Pjbb7/94Ycf9ro/iB59Sy+Sw0nY9Y/23rhx49i7DN3oW3qRHE4aiwv2hKGlF8nhpLG4YE8YWnqRHE4aiwv2hKGlF8nhpLG4YE8YWnqRHE4aiwv2hKGlF8nhpLG4YE8YWnqRHE4aiwv2hKGlF8nhpLG4YE8YWnqRHE4aiwv2hKGlF8nhpLG4YE8YWnqRnD6LxWKnP4mk2ltvvXXsXTi0xWJx7CFmQkLfUovk9GG+xY18D4PXWS+S04f5FjfyPQxeZ71ITh/mW9zI9zB4nfUiOX2Yb3Ej38PgddaL5PRhvsWNfA+D11kvktOH+RY38j0MXme9SE4f5lvcyPcweJ31Ijl9mG9xI9/D4HXWi+T0Yb7FjXwPg9dZL5LTh/kWN/I9DF5nvUhOH+Zb3Mj3MHid9SI5fZhvcSPfw+B11ovk9GG+xY18D4PXWS+S04f5FjfyPQxeZ71ITh/mW9zI9zB4nfUiuXCmPgcrsfe5UOQbt4S+pRbJhbM27qk3btQLLUgunLVxT71xo15oQXLhrI176o0b9UILkgs347hvmsZ/vVqt+r6/cLO6rnd9thlZm+cHrrdt2y23JN9ZWKs3JiQXbsZxn2WZX4zats2ybHObqqrSNC3LsizLoig2N5BvDcOQpukwDMvl0jk31x4O9ub5vPWmaVq8lmWZJDXZQN6vtG2b5/nmM5DvvKzVGxOSC3fIvlVVlXNutVoNw1AURVVVXddtPo9zruu6NE27riuKYrVazfje3No8n71vla855yZHV1VV+U7Wtq18vRkx+c7IWr0xIblws4x7WYDkzXie5865PM/ln1mWyeom76ydc7LkFUUhX/iVTp5E1sQsy9I0zfPcr5LS7a7P2jyfvW/5r8uynPQtyVpSS9PUNzk5M0y++2Ct3piQXLh5j7fatq3rWlY0Od4anwXyjUpa2qRveXmeL5fLNE2bpsnzPM/zyy6VBbA2z/d6nnDct5qm8QfcTdPIe5QLD6TId0bW6o0JyYWbt2/JknRZ32qapmkaOfCS99d5nldVNd5AFrvVauV/cN5LINbm+ex9q32tKIpx35LDJnnEOSdvXybBke/srNUbE5ILN8u4l/faflGTBibvzcdnlvq+l8bmnMuyzDk3blpt2/q352VZjq/qbx6TBbM2z/fdt8bn96Rv+QPusiyrqvI5ku8+WKs3JiQXbvbzhLJgbR5vyeV3Wcjqupa70cZ9S9Y7f/1DLpL5Ry68gyOAtXk+S72r1UpSmNyXIe9LfIhlWcqpv7Ztq6qSW2/kTcxAvvthrd6YkFy4g/WtrutkXVsul3KBRLbZfK/d9738bFEUs/+Wj7V5Pm+90mmGYej7fjOdsiyXy+UwDFVVSd+S8TC5fEW+M7JWb0xILtyM78flJJKcBvS/3zO+G14Otvz9ZrKcySN+Gznl6C+cyN2Jy+WS+83CzFVv3/cSxPjBSXbjOwz9ffAT5Dsva/XGhOTCzTXu5YLHMAx1XY/fRPu/jlHXtX/fLTcTTp6hrms5szR5vGkarn8Em6Xevu8vi2D8eF3Xvv10XTc5liLffbBWb0xILpy1cU+9caNeaEFy4ayNe+qNG/VCC5ILZ23cU2/cqBdakFw4a+OeeuNGvdCC5MJZG/fUGzfqhRYkF+7s7Cyx5Ozs7Ngv+UGRb9wS+pZaJBfO2rin3rhRL7QguXDWxj31xo16oQXJhbM27qk3btQLLUgunLVxT71xo15oQXLhrI176o0b9UILkgtnbdxTb9yoF1qQXDhr455640a90ILkwlkb99QbN+qFFiQXztq4p964US+0ILlw1sY99caNeqEFyYWzNu6pN27UCy1ILpy1cU+9caNeaEFy4ayNe+qNG/VCC5ILZ23cU2/cqBdakFw4a+OeeuNGvdCC5MJZG/fUGzfqhRYkF87auKfeuFEvtCC5cHwebtzIN24JfUstkgtnbdxTb9yoF1qQXDhr455640a90ILkwlkb99QbN+qFFiQXztq4p964US+0ILlw1sY99caNeqEFyYWzNu6pN27UCy1ILpy1cU+9caNeaEFy4ayNe+qNG/VCC5ILZ23cU2/cqBdakFw4a+OeeuNGvdCC5MJZG/fUGzfqhRYkF87auKfeuFEvtCC5cNbGPfXGjXqhBcmFszbuqTdu1AstSC6ctXFPvXGjXmhBcuGsjXvqjRv1QguSC2dt3FNv3KgXWpBcuPPz810+TnY2N27cOMr/e35+fuyX/KCOle+xWMs3oW+pRXLKfP311x9++OEnn3xy7B0BdKNv6UVymvz999/vvvvuer3+6KOPfv3112PvDqAYfUsvktPk9u3bT548GYbh2bNnb7/99rF3B1CMvqUXyanx8OHDr776yv/zxx9//Oabb464P4Bq9C29SE6HV69enZ+fv3z50j+yXq9v3rz5/PnzI+4VoBd9Sy+S0+Gzzz77+eefJw/++eefH3zwwVH2B9COvqUXySnwxx9/3Llz58Jvff75548ePTrw/gARoG/pRXIKvPPOO0+fPr3wWy9evLh58+arV68OvEuAdvQtvUju1H3//ff379+/YoNHjx598cUXh9odIBL0Lb1I7qQ9f/781q1bVx9Ordfr999//6+//jrYXgERoG/pRXIn7eOPP/7tt9/euFnTNO+9994B9geIBn1LL5I7XY8fP/7000+33Pjbb7/94Ycf9ro/QEzoW3qR3Ona9e+63rhx49i7DKhB39KL5PRhvgHXxzzSi+T0Yb4B18c80ovk9GG+AdfHPNKL5PRhvgHXxzzSi+T0Yb4B18c80ovk9GG+AdfHPNKL5PRhvgHXxzzSi+T0Yb4B18c80ovk9GG+AdfHPNKL5PRhvgHXxzzSK4bkFovFTn8PSbu33nrr2LtwUIvF4thDDBFK6FtqxZAc4y9u5It9YFzpFUNyjL+4kS/2gXGlVwzJMf7iRr7YB8aVXjEkx/iLG/liHxhXesWQHOMvbuSLfWBc6RVDcoy/uJEv9oFxpVcMyTH+4ka+2AfGlV4xJMf4ixv5Yh8YV3rFkBzjL27ki31gXOkVQ3KMv7iRL/aBcaVXDMkx/uJGvtgHxpVeMSTH+Isb+WIfGFd6xZAc4y9u5It9YFzpFUNyjL+4kS/2gXGlVwzJMf7iRr7YB8aVXnMmZ+1zsKx9LhT5IiYJfUutOZOzNg6oN27W6rWGfPWib4Wj3rhZq9ca8tWLvhWOeuNmrV5ryFevE+1bTdP4r1erVd/3F25W1/WuzzYja+P+wPW2bbvlluSLAOSr14n2rSzL/GLUtm2WZZvbVFWVpmlZlmVZFkWxuYF8axiGNE2HYVgul865ufZwsDfu5603TdPitSzLJKnJBvJ+pW3bPM83n4F8cR3kq5fWvlVVlXNutVoNw1AURVVVXddtPo9zruu6NE27riuKYrVazfje3Nq4n71vla855yZHV1VV+U7Wtq18vRkx+SIY+ep1cn1LFiB5M57nuXMuz3P5Z5ZlsrrJO2vnnCx5RVHIF36lkyeRNTHLsjRN8zz3q6R0u+uzNu5n71v+67IsJ31LspbU0jT1TU7ODJMvro989Tq5viVk2arrWlY0Od4anwXyjUpa2qRveXmeL5fLNE2bpsnzPM/zyy6VBbA27vd6nnDct5qm8QfcTdPIe5QLD6TIF8HIV6/T7VuyJF3Wt5qmaZpGDrzk/XWe51VVjTeQxW61WvkfnPcSiLVxP3vfal8rimLct+SwSR5xzsnbl0lw5ItrIl+9Tq5vyXttv6hJA5P35uMzS33fS2NzzmVZ5pwbN622bf3b87Isx1f1N4/Jglkb9/vuW+Pze9K3/AF3WZZVVfkcyRfXR756nVzfEnLiSBaszeMtufwuC1ld13I32rhvyXrnr3/IRTL/yIV3cASwNu5nqXe1WkkKk/sy5H2JD7EsSzn117ZtVVVy6428iRnIF3MgX71U9q2u62RdWy6XcoFEttl8r933vfxsURSz/5aPtXE/b73SaYZh6Pt+M52yLJfL5TAMVVVJ35LxMLl8Rb4IRr56nVzfkvfjchJJTgP63+8Z3w0vB1v+fjNZzuQRv42ccvQXTuTuxOVyyf1mYeaqt+97CWL84CS78R2G/j74CfLFdZCvXifXt4ZhkAsewzDUdT1+E+3/OkZd1/59t9xMOHmGuq7lzNLk8aZpuP4RbJZ6+76/LILx43Vd+/bTdd3kWIp8cX3kq9cp9i0tqDdu1uq1hnz1om+Fo964WavXGvLVi74VjnrjZq1ea8hXL/pWOOqNm7V6rSFfvehb4ag3btbqtYZ89ZozubOzs8SSs7OzGV+900e+iElC31KL461w1Bs3a/VaQ7560bfCUW/crNVrDfnqRd8KR71xs1avNeSrF30rHPXGzVq91pCvXvStcNQbN2v1WkO+etG3wlFv3KzVaw356kXfCke9cbNWrzXkqxd9Kxz1xs1avdaQr170rXDUGzdr9VpDvnrRt8JRb9ys1WsN+epF3wpHvXGzVq815KsXfSsc9cbNWr3WkK9e9K1w1Bs3a/VaQ7560bfCUW/crNVrDfnqRd8KR71xs1avNeSrF30rHPXGzVq91pCvXvStcNQbN2v1WkO+evF5x+GsfR4u+SImCX1LLY63wlFv3KzVaw356kXfCke9cbNWrzXkqxd9Kxz1xs1avdaQr170rXDUGzdr9VpDvnrRt8JRb9ys1WsN+epF3wpHvXGzVq815KsXfSsc9cbNWr3WkK9e9K1w1Bs3a/VaQ7560bfCUW/crNVrDfnqRd8KR71xs1avNeSrF30rHPXGzVq91pCvXvStcNQbN2v1WkO+etG3wlFv3KzVaw356kXfCke9cbNWrzXkqxd9Kxz1xs1avdaQr170rXDUGzdr9VpDvnrRt8JRb9ys1WsN+eo1Z3Ln5+e7fJzsbP7xj38c5f89Pz+f8dU7fcfK91is5WtNQt9SS31yP/3002KxePDgwbF3BIAm9C29dCf34sWLu3fvrtfre/fuPX369Ni7A0AN+pZeupP75z//+eTJk2EYnj17tlgsjr07ANSgb+mlOLk///zzX//6l//nv//978ePHx9xfwAoQt/SS2ty6/X69u3bL1++vOIRALgMfUsvrcldeHQ1OQIDgMvQt/RSmdwVV7P8FS8AuAJ9Sy+VyV1x96C/w/DAuwRAF/qWXvqS++WXX67+ba2ffvrp4cOHB9sfABrRt/RSltzLly/v3r376tWrK7ZZr9eLxeK///3vwfYKgDr0Lb2UJXf//v3//Oc/b9ysaZovv/xy/7sDQCv6ll6aktupG23Z4QDYRN/SS1Ny9+7d2+nvot69e/fYuwzgRNG39IohOcYfgF2xbugVQ3KMPwC7Yt3QK4bkGH8AdsW6oVcMyTH+AOyKdUOvGJJj/AHYFeuGXjEkx/gDsCvWDb1iSI7xB2BXrBt6xZAc4w/Arlg39IohOcYfgF2xbugVQ3KMPwC7Yt3QK4bkGH8AdsW6oVcMyTH+AOyKdUOvGJJj/AHYFeuGXjEkx/gDsCvWDb1iSI7xB2BXrBt6xZAc4w/Arlg39IohOcYfgF2xbugVQ3KMPwC7Yt3QK4bkGH8AdsW6oVcMyTH+AOyKdUOvGJJj/AHYFeuGXjEkx/gDsCvWDb3mTG6xWCSWLBaLGV89AIeU0LfUmjM5a+PAWr1ATJi/etG3wlmrF4gJ81cv+lY4a/UCMWH+6qW4b7Vtu+WWTdPsYwcY94BezF+9TrdvpWlavJZlWVmWmxv0fT8MQ9u2eZ5vPkNZlvJTaZoOw7BcLp1zM+4h4x7Qi/mr10n3rfI159zk6KqqKt/J2raVr7uumzyJc67rujRNu64rimK1Ws147MW4B/Ri/up10n3Lf12W5aRvZVkmh1llWaZp6ptcXdfDMEiXkkeyLEvTVLYUq9Vqlj1k3AN6MX/1Oum+NT5POO5bTdNkWSZHTk3TOOeccxceSOV5vlwu0zRtmibP8zzP5dTiLBj3gF7MX71Oum+1rxVFMe5bctgkjzjn6rqWc4njH5d+1jTNarXy35r3EhfjHtCL+auXpr41Pr8nfUs6llzfqqrK353Rtq0//CrLcnzXxub9HcEY94BezF+9Tq5vrVYrOZya3JdRFEWaplVVyWZlWcqpv7Ztq6oqiqKqqizLpEVJP/PXt5xz4+tbm7dvhGHcA3oxf/U6ub7lSacZhqHv+6IoJpevyrJcLpfDMFRVJX1Ljswml6/6vs+ybBiGzWe4PsY9oBfzV69T7Ft93zvnpC15cleF/+f4DkN/H/yE3L7hN8vzXJ6W+wkBMH/1Orm+1ff9ZZegxo/Xde3bT9d1k2Opuq7lzOHkGZqm4foWgIH5q9nJ9S1FrNULxIT5qxd9K5y1eoGYMH/1om+Fs1YvEBPmr170rXDW6gViwvzVi74Vzlq9QEyYv3rNmdzZ2VliydnZ2YyvHoBDSuhbanG8Fc5avUBMmL960bfCWasXiAnzVy/6Vjhr9QIxYf7qRd8KZ61eICbMX73oW+Gs1QvEhPmrF30rnLV6gZgwf/Wib4WzVi8QE+avXvStcNbqBWLC/NWLvhXOWr1ATJi/etG3wlmrF4gJ81cv+lY4a/UCMWH+6kXfCmetXiAmzF+96FvhrNULxIT5qxd9K5y1eoGYMH/1om+Fs1YvEBPmr170rXDW6gViwvzVi74Vzlq9QEyYv3rxecfh+LxjQK+EvqUWx1vhrNULxIT5qxd9K5y1eoGYMH/1om+Fs1YvEBPmr170rXDW6gViwvzVi74Vzlq9QEyYv3rRt8JZqxeICfNXL/pWOGv1AjFh/upF3wpnrV4gJsxfvehb4azVC8SE+asXfSuctXqBmDB/9aJvhbNWLxAT5q9e9K1w1uoFYsL81Yu+Fc5avUBMmL960bfCWasXiAnzVy/6Vjhr9QIxYf7qRd8KZ61eICbMX73oW+Gs1QvEhPmr15zJnZ+fz/uBwifu/Px8xlcPwCEl9C21SA6ARfQtvUgOgEX0Lb1IDoBF9C29SA6ARbdv3z72LiAQfQsAoAl9CwCgCX0LAKAJfQsAoAl9CwCgCX0LAKAJfQsAoAl9CwCgCX0LAAWi8yQAAAArSURBVKAJfQsAoAl9CwCgCX0LAKAJfQsAoAl9CwCgCX0LAKAJfQsAoMn/AMf9A0W3O98gAAAAAElFTkSuQmCC" alt="" />
策略模式的优点
(1)策略模式提供了管理相关的算法族的办法。策略类的等级结构定义了一个算法或行为族。恰当使用继承可以把公共的代码移到父类里面,从而避免代码重复。
(2)使用策略模式可以避免使用多重条件(if-else)语句。多重条件语句不易维护,它把采取哪一种算法或采取哪一种行为的逻辑与算法或行为的逻辑混合在一起,统统列在一个多重条件语句里面,比使用继承的办法还要原始和落后。
策略模式的缺点
(1)客户端必须知道所有的策略类,并自行决定使用哪一个策略类。这就意味着客户端必须理解这些算法的区别,以便适时选择恰当的算法类。换言之,策略模式只适用于客户端知道算法或行为的情况。
(2)由于策略模式把每个具体的策略实现都单独封装成为类,如果备选的策略很多的话,那么对象的数目就会很可观。
《JAVA与模式》之策略模式的更多相关文章
- 设计模式:策略模式(Strategy)
定 义:它定义了算法家族,分别封装起来,让它们之间可以互相替换,此模式让算法的变化, 不会影响到使用算法的客户. 示例:商场收银系统,实现正常收费.满300返100.打8折.......等不同收费 ...
- PHP设计模式之策略模式
前提: 在软件开发中也常常遇到类似的情况,实现某一个功能有多种算法或者策略,我们可以根据环境或者条件的不同选择不同的算法或者策略来完成该功能.如查 找.排序等,一种常用的方法是硬编码(Hard Cod ...
- JavaScript设计模式之策略模式(学习笔记)
在网上搜索“为什么MVC不是一种设计模式呢?”其中有解答:MVC其实是三个经典设计模式的演变:观察者模式(Observer).策略模式(Strategy).组合模式(Composite).所以我今天选 ...
- 乐在其中设计模式(C#) - 策略模式(Strategy Pattern)
原文:乐在其中设计模式(C#) - 策略模式(Strategy Pattern) [索引页][源码下载] 乐在其中设计模式(C#) - 策略模式(Strategy Pattern) 作者:webabc ...
- JavaScript设计模式之策略模式
所谓"条条道路通罗马",在现实中,为达到某种目的往往不是只有一种方法.比如挣钱养家:可以做点小生意,可以打分工,甚至还可以是偷.抢.赌等等各种手段.在程序语言设计中,也会遇到这种类 ...
- 【设计模式】【应用】使用模板方法设计模式、策略模式 处理DAO中的增删改查
原文:使用模板方法设计模式.策略模式 处理DAO中的增删改查 关于模板模式和策略模式参考前面的文章. 分析 在dao中,我们经常要做增删改查操作,如果每个对每个业务对象的操作都写一遍,代码量非常庞大. ...
- [design-patterns]设计模式之一策略模式
设计模式 从今天开始开启设计模式专栏,我会系统的分析和总结每一个设计模式以及应用场景.那么首先,什么是设计模式呢,作为一个软件开发人员,程序人人都会写,但是写出一款逻辑清晰,扩展性强,可维护的程序就不 ...
- 设计模式入门,策略模式,c++代码实现
// test01.cpp : Defines the entry point for the console application.////第一章,设计模式入门,策略模式#include &quo ...
- 设计模式之策略模式和状态模式(strategy pattern & state pattern)
本文来讲解一下两个结构比较相似的行为设计模式:策略模式和状态模式.两者单独的理解和学习都是比较直观简单的,但是实际使用的时候却并不好实践,算是易学难用的设计模式吧.这也是把两者放在一起介绍的原因,经过 ...
- python设计模式之策略模式
每次看到项目中存在大量的if else代码时,都会心生一丝不安全感. 特别是产品给的需求需要添加或者更改一种if条件时,生怕会因为自己的疏忽而使代码天崩地裂,哈哈,本文的目的就是来解决这种不安全感的, ...
随机推荐
- ligerui_ligerTree_002_利用JavaScript代码配置ligerTree节点
利用JavaScript代码配置ligerTree节点: 源码地址:http://download.csdn.net/detail/poiuy1991719/8571255 效果图: <%@ p ...
- centOS6.6升级gcc4.8
最近想升级mesos0.23.0,结果编译mesos0.23.0需要gcc4.8+,可是centOS6.6最高版本的gcc也只到4.4.7版本,只好手动升级一下了. 下载4.8.2源码 wget ft ...
- 夺命雷公狗---node.js---4net模块(上)
node.js为我们提供了一个net模块,主要是为了提供了一些底层通信的小工具,包含了创建服务器/客户端方法,引入方式也很简单: var net = require('net'); net模块也为我们 ...
- java - Annotation元数据
Annotation元数据(一) 一.Annotation究竟是什么? 是java5.0中的新特征 数据的数据(元数据) Annotation和访问修饰符一样,应用于包.类型.构造方法.方法.成员变量 ...
- shell expr 文件扩展名判断 整数判断
expr "text.sh" : ".*\.sh" &>/dev/null && echo "yes" ||e ...
- android 弹幕效果demo
记得之前有位朋友在我的公众号里问过我,像直播的那种弹幕功能该如何实现?如今直播行业确实是非常火爆啊,大大小小的公司都要涉足一下直播的领域,用斗鱼的话来讲,现在就是千播之战.而弹幕则无疑是直播功能当中最 ...
- 怎样使用AutoLayOut为UIScrollView添加约束
1.在ViewController中拖入1个UIScrollView,并为其添加约束 约束为上下左右四边与superview对齐 2.在scrollview中,拖入1个UIView,为了便于区分将其设 ...
- 【python cookbook】【数据结构与算法】6.在字典中将键映射到多个值上
问题:一个能将键(key)映射到多个值的字典(即所谓的一键多值字典[multidict]) 解决方案:如果想让键映射到多值,需要将这多个值保持到另一个容器如列表或集合中: >>> d ...
- 161103、Spring Boot 入门
Spring Boot 入门 spring Boot是Spring社区较新的一个项目.该项目的目的是帮助开发者更容易的创建基于Spring的应用程序和服务,让更多人的人更快的对Spring进行入门体验 ...
- linux-exp 工具+小技巧
# 工具篇 # pwntools ,gdb-peda ROPgadget-tool . EDB ## pwntools获取.安装和文档帮助 ## - pwntools: github可以搜索到 htt ...