Preface

Pattern recognition has its origins in engineering, whereas machine learning grew out of computer science. However, these activities can be viewed as two facets of the same field, and together they have undergone substantial development over the past ten years. In particular, Bayesian methods have grown from a specialist niche to become mainstream, while graphical models have emerged as a general framework for describing and applying probabilistic models. Also, the practical applicability of Bayesian methods has been greatly enhanced through the development of a range of approximate inference algorithms such as variational Bayes and expectation propagation. Similarly, new models based on kernels have had significant impact on both algorithms and applications.

模式识别起源于工程学,机器学习起源于计算机科学。但它们可以认为是相同领域的不同层面,它们在近十年里经历了重大的发展。特别是,贝叶斯方法从专家的专属变成了主流,图形模式也已经成为描述和应用概率模型的一种基本框架。同时,由于一系列近似推理算法的发展,例如变分贝叶斯和期望繁殖,使得贝叶斯方法的实用性大大增加。类似的,那些基于核的新模型也在算法和应用上产生了巨大影响。

This new textbook reflects these recent developments while providing a comprehensive introduction to the fields of pattern recognition and machine learning. It is aimed at advanced undergraduates or first year PhD students, as well as researchers and practitioners, and assumes no previous knowledge of pattern recognition or machine learning concepts. Knowledge of multivariate calculus and basic linear algebra is required, and some familiarity with probabilities would be helpful though not essential as the book includes a self-contained introduction to basic probability theory.

本书介绍了这些最近的发展,并提供了模式识别和机器学习领域的全面介绍。本书适合高年级本科生、硕士生或一年级博士研究生,以及其他该领域的研究者,并假设读者之前没有接触过模式识别和机器学习的概念。本书的阅读者需要具备多元微积分和基本线性代数的知识,对概率的了解也会帮助阅读本书,但是没有这些也没关系,因为本书包含了可以自学的基本概率理论的介绍。

Because this book has broad scope, it is impossible to provide a complete list of references, and in particular no attempt has been made to provide accurate historical attribution of ideas.  Instead, the aim has been to give references that offer greater detail than is possible here and that hopefully provide entry points into what, in some cases, is a very extensive literature. For this reason, the references are often to more recent textbooks and review articles rather than to original sources.

因为本书包含太广,所以不能提供一个完整的参考列表,尤其是没有提供准确的思想历史归属的想法。相反,本书主要是提供拥有更多细节的参考文献而不是最初提出理论或者出发点的文献。由于这个原因,参考文献通常是最近的书籍和文章而不是原始的出处。

The book is supported by a great deal of additional material, including lecture slides as well as the complete set of figures used in the book, and the reader is encouraged to visit the book web site for the latest information:

本书还提供了许多额外的资源,包括幻灯片和本书使用的完整的图片集,希望读者访问本书的网站来获取最新的消息。

http://research.microsoft.com/cmbishop/PRML

Exercises

The exercises that appear at the end of every chapter form an important component of the book. Each exercise has been carefully chosen to reinforce concepts explained in the text or to develop and generalize them in significant ways, and each is graded according to difficulty ranging from (*), which denotes a simple exercise taking a few minutes to complete, through to (***), which denotes a significantly more complex exercise.

练习

每章结尾的练习题是本书是重要组成部分。每一个练习都是经过精心选择的,以此来增强对概念的理解,或者以一种有效的方式对概念进行推广。每一题都根据它的难度用(*)号来分级,(*)表示之花几分钟就能搞定的简单练习,(***)表明更复杂。

It has been difficult to know to what extent these solutions should be made widely available. Those engaged in self-study will find worked solutions very beneficial, whereas many course tutors request that solutions be available only via the publisher so that the exercises may be used in class.  In order to try to meet these conflicting requirements, those exercises that help amplify key points in the text, or that fill in important details, have solutions that are available as a PDF file from the book web site. Such exercises are denoted byWWW. Solutions for the remaining exercises are available to course tutors by contacting the publisher (contact details are given on the book web site). Readers are strongly encouraged to work through the exercises unaided, and to turn to the solutions only as required.

我们很难知道答案在多大程度内不同是可以接受的。那些喜欢自学的读者会发现提供答案是很有利的,但许多授课教师要求答案只能通过老师分发,那样这些练习就可在课堂上使用。为了满足这两个相互矛盾的要求,这些增强书中重点或者包含重点细节的练习,它们的答案可以在本书的网站上以PDF的形式得到,这样的练习标注了WWW。剩下的练习的答案,授课老师可以联系出版社得到。我们鼓励读者独立解答这些习题,在需要的时候才参考答案。

Although this book focuses on concepts and principles, in a taught course the students should ideally have the opportunity to experiment with some of the key algorithms using appropriate data sets. A companion volume (Bishop and Nabney, 2008) will deal with practical aspects of pattern recognition and machine learning, and will be accompanied by Matlab software implementing most of the algorithms discussed in this book.

虽然本书的重点在概念和规律,在课堂上同学们应该有机会利用合适的数据集做一些关键算法的试验。它的姊妹篇(Bishop and Nabney,2008)将会解决模式识别和机器学习的实践方面,带有本书中讨论的大多数算法的matlab实现。

Pattern Recognition and Machine Learning-01-Preface的更多相关文章

  1. Pattern Recognition and Machine Learning (preface translation)

    前言 鉴于机器学习产生自计算机科学,模式识别却起源于工程学.然而,这些活动能被看做同一个领域的两个方面,并且他们同时在这过去的十年间经历了本质上的发展.特别是,当图像模型已经作为一个用来描述和应用概率 ...

  2. Pattern Recognition And Machine Learning读书会前言

    读书会成立属于偶然,一次群里无聊到极点,有人说Pattern Recognition And Machine Learning这本书不错,加之有好友之前推荐过,便发了封群邮件组织这个读书会,采用轮流讲 ...

  3. Pattern recognition and machine learning 疑难处汇总

    不断更新ing......... p141 para 1. 当一个x对应的t值不止一个时,Gaussian nosie assumption就不合适了.因为Gaussian 是unimodal的,这意 ...

  4. 学习笔记-----《Pattern Recognition and Machine Learning》Christopher M. Bishop

    Preface 模式识别这个词,以前一直不懂是什么意思,直到今年初,才开始打算读这本广为推荐的书,初步了解到,它的大致意思是从数据中发现特征,规律,属于机器学习的一个分支. 在前言中,阐述了什么是模式 ...

  5. 今天开始学Pattern Recognition and Machine Learning (PRML),章节5.2-5.3,Neural Networks神经网络训练(BP算法)

    转载请注明出处:http://www.cnblogs.com/xbinworld/p/4265530.html 这一篇是整个第五章的精华了,会重点介绍一下Neural Networks的训练方法——反 ...

  6. Pattern Recognition And Machine Learning (模式识别与机器学习) 笔记 (1)

    By Yunduan Cui 这是我自己的PRML学习笔记,目前持续更新中. 第二章 Probability Distributions 概率分布 本章介绍了书中要用到的概率分布模型,是之后章节的基础 ...

  7. 今天开始学习模式识别与机器学习Pattern Recognition and Machine Learning (PRML),章节5.1,Neural Networks神经网络-前向网络。

    话说上一次写这个笔记是13年的事情了···那时候忙着实习,找工作,毕业什么的就没写下去了,现在工作了有半年时间也算稳定了,我会继续把这个笔记写完.其实很多章节都看了,不过还没写出来,先从第5章开始吧, ...

  8. Pattern Recognition and Machine Learning 模式识别与机器学习

    模式识别(PR)领域:     关注的是利⽤计算机算法⾃动发现数据中的规律,以及使⽤这些规律采取将数据分类等⾏动. 聚类:目标是发现数据中相似样本的分组. 反馈学习:是在给定的条件下,找到合适的动作, ...

  9. Pattern Recognition and Machine Learning-02-1.0-Introduction

    Introduction The problem of searching for patterns in data is a fundamental one and has a long and s ...

随机推荐

  1. JS模拟Touch事件

    var ele = document.getElementsByClassName('target_node_class')[0] //may have x and y properties in s ...

  2. ajax传参数json对象到后台获取

    类型1 var version = $("#version").val(); var ids[i] = ("127.0.0.1","192.168.1 ...

  3. 《maven实战》笔记(1)----maven的初识

    刚入职公司用maven进行项目管理,于是昨天下午开始看<maven实战>的pdf,感觉很好,作者写的很有条理. 下面是笔记,看书做笔记还是很有必要的,加强自己的总结. 什么是maven? ...

  4. js生成带log的二维码(qrcodejs)

    github: qrcodejs cdn: http://static.runoob.com/assets/qrcode/qrcode.min.js #qrcode #qrcode margin: 2 ...

  5. 文件上传使用FileUpload组件进行代码实现

    使用FileUpload组件进行代码实现 实现步骤 1. 获取解析器工厂: DiskFileItemFactory 2. 获取解析器对象: ServletFileUpload 3. 解析request ...

  6. 详解python中@的用法

    python中@的用法 @是一个装饰器,针对函数,起调用传参的作用. 有修饰和被修饰的区别,‘@function'作为一个装饰器,用来修饰紧跟着的函数(可以是另一个装饰器,也可以是函数定义). 代码1 ...

  7. 安装mysql数据库及问题解决方法

    1.mysql官网下载安装包,官网地址:www.mysql.com [root@seiang software]# ll total 580020 -rw-r--r--. 1 root root 59 ...

  8. Centos 6.8环境下OpenLDAP安装与部署

    一.OpenLDAP介绍 LDAP 全称轻量级目录访问协议(英文:Lightweight Directory Access Protocol),是一个运行在 TCP/IP 上的目录访问协议.LDAP实 ...

  9. orac l e数据库第一章

    数据库两种权限:                    1.系统权限 2.对象权限 数据库端口号:                     SQL SERVER  1433 MySql   3306 ...

  10. jprofile 远程监控linux上的jvm

    环境 客户端:win7+jprofiler_windows-x64_10_0_4.exe linux服务器:tomcat7+jdk1.7+jprofiler_linux_10_0_4.sh 一.客户端 ...