感谢知乎大神的分享 https://zhuanlan.zhihu.com/p/31426458

Ross B. Girshick在2016年提出了新的Faster RCNN,在结构上,Faster RCNN已经将特征抽取(feature extraction),proposal提取,bounding box regression(rect refine),classification都整合在了一个网络中,使得综合性能有较大提高,在检测速度方面尤为明显。

Faster RCNN其实可以分为4个主要内容:

  1. Conv layers。作为一种CNN网络目标检测方法,Faster RCNN首先使用一组基础的conv+relu+pooling层提取image的feature maps。该feature maps被共享用于后续RPN层和全连接层。
  2. Region Proposal Networks。RPN网络用于生成region proposals。该层通过softmax判断anchors属于foreground或者background,再利用bounding box regression修正anchors获得精确的proposals。
  3. Roi Pooling。该层收集输入的feature maps和proposals,综合这些信息后提取proposal feature maps,送入后续全连接层判定目标类别。
  4. Classification。利用proposal feature maps计算proposal的类别,同时再次bounding box regression获得检测框最终的精确位置。

具体操作过程:对于一副任意大小PxQ的图像,首先缩放至固定大小MxN,然后将MxN图像送入网络,而Conv layers中包含了13个conv层+13个relu层+4个pooling层;RPN网络首先经过3x3卷积,再分别生成foreground anchors与bounding box regression偏移量,然后计算出proposals;而Roi Pooling层则利用proposals从feature maps中提取proposal feature送入后续全连接和softmax网络作classification(即分类proposal到底是什么object)。

1:Conv layers

Conv layers包含了conv,pooling,relu三种层。以python版本中的VGG16模型中的faster_rcnn_test.pt的网络结构为例,如图2,Conv layers部分共有13个conv层,13个relu层,4个pooling层。这里有一个非常容易被忽略但是又无比重要的信息,在Conv layers中:

  1. 所有的conv层都是:  ,  , 
  2. 所有的pooling层都是:  ,  , 

为何重要?在Faster RCNN Conv layers中对所有的卷积都做了扩边处理( pad=1,即填充一圈0),导致原图变为 (M+2)x(N+2)大小,再做3x3卷积后输出MxN 。正是这种设置,导致Conv layers中的conv层不改变输入和输出矩阵大小。如图3:

类似的是,Conv layers中的pooling层kernel_size=2,stride=2。这样每个经过pooling层的MxN矩阵,都会变为(M/2)x(N/2)大小。

综上所述,在整个Conv layers中,conv和relu层不改变输入输出大小,只有pooling层使输出长宽都变为输入的1/2。
那么,一个MxN大小的矩阵经过Conv layers固定变为(M/16)x(N/16),因为有4个pooling层,2的4次方就是缩小了16倍了。

这样Conv layers生成的featuure map中都可以和原图对应起来。

2:Region Proposal Networks(RPN)

经典的检测方法生成检测框都非常耗时,如OpenCV adaboost使用滑动窗口+图像金字塔生成检测框;或如R-CNN使用SS(Selective Search)方法生成检测框。而Faster RCNN则抛弃了传统的滑动窗口和SS方法,直接使用RPN生成检测框,这也是Faster R-CNN的巨大优势,能极大提升检测框的生成速度。

3:多通道图像卷积基础知识介绍

在介绍RPN前,还要多解释几句基础知识,已经懂的看官老爷跳过就好。

  1. 对于单通道图像+单卷积核做卷积,第一章中的图3已经展示了;
  2. 对于多通道图像+多卷积核做卷积,计算方式如下:
  3. 如图5,输入有3个通道,同时有2个卷积核。对于每个卷积核,先在输入3个通道分别作卷积,再将3个通道结果加起来得到卷积输出。所以对于某个卷积层,无论输入图像有多少个通道,输出图像通道数总是等于卷积核数量!
    对多通道图像做1x1卷积,其实就是将输入图像于每个通道乘以卷积系数后加在一起,即相当于把原图像中本来各个独立的通道“联通”在了一起。(这样信息没有丢失,保留了颜色信息)
  4. 卷积核(kernel)可以是不同函数的,多通道输入,最后单通道输出,得到的map因为卷积核的计算方式不同也不同。
  5. 4:anchors 锚
  6. 提到RPN网络,就不能不说anchors。所谓anchors,实际上就是一组由rpn/generate_anchors.py生成的矩形。直接运行作者demo中的generate_anchors.py可以得到以下输出:
  7. [[ -84.  -40.   99.   55.]
    [-176. -88. 191. 103.]
    [-360. -184. 375. 199.]
    [ -56. -56. 71. 71.]
    [-120. -120. 135. 135.]
    [-248. -248. 263. 263.]
    [ -36. -80. 51. 95.]
    [ -80. -168. 95. 183.]
    [-168. -344. 183. 359.]]

    其中每行的4个值  表矩形左上和右下角点坐标。9个矩形共有3种形状,长宽比为大约为  三种,如图6。实际上通过anchors就引入了检测中常用到的多尺度方法。

  8. 注:关于上面的anchors size,其实是根据检测图像设置的。在python demo中,会把任意大小的输入图像reshape成800x600(即图2中的M=800,N=600)。再回头来看anchors的大小,anchors中长宽1:2中最大为352x704,长宽2:1中最大736x384,基本是cover了800x600的各个尺度和形状。
    那么这9个anchors是做什么的呢?借用Faster RCNN论文中的原图,如图7,遍历Conv layers计算获得的feature maps,为每一个点都配备这9种anchors作为初始的检测框。这样做获得检测框很不准确,不用担心,后面还有2次bounding box regression可以修正检测框位置。

  9. 解释一下上面这张图的数字。

    1. 在原文中使用的是ZF model中,其Conv Layers中最后的conv5层num_output=256,对应生成256张特征图,所以相当于feature map每个点都是256-dimensions
    2. 在conv5之后,做了rpn_conv/3x3卷积且num_output=256,相当于每个点又融合了周围3x3的空间信息(猜测这样做也许更鲁棒?反正我没测试),同时256-d不变(如图4和图7中的红框)
    3. 假设在conv5 feature map中每个点上有k个anchor(默认k=9),而每个anhcor要分foreground和background,所以每个点由256d feature转化为cls=2k scores;而每个anchor都有(x, y, w, h)对应4个偏移量,所以reg=4k coordinates
    4. 补充一点,全部anchors拿去训练太多了,训练程序会在合适的anchors中随机选取128个postive anchors+128个negative anchors进行训练(什么是合适的anchors下文5.1有解释)

    注意,在本文讲解中使用的VGG conv5 num_output=512,所以是512d,其他类似。

  10. 其实RPN最终就是在原图尺度上,设置了密密麻麻的候选Anchor。然后用cnn去判断哪些Anchor是里面有目标的foreground anchor,哪些是没目标的backgroud。所以,仅仅是个二分类而已!

    那么Anchor一共有多少个?原图800x600,VGG下采样16倍,feature map每个点设置9个Anchor,所以:

    其中ceil()表示向上取整,是因为VGG输出的feature map size= 50*38。

  11. 5.softmax判定foreground与background

  12. 一副MxN大小的矩阵送入Faster RCNN网络后,到RPN网络变为(M/16)x(N/16),不妨设 W=M/16,H=N/16。在进入reshape与softmax之前,先做了1x1卷积,如图9:
  13. 该1x1卷积的caffe prototxt定义如下:

  14. layer {
    name: "rpn_cls_score"
    type: "Convolution"
    bottom: "rpn/output"
    top: "rpn_cls_score"
    convolution_param {
    num_output: 18 # 2(bg/fg) * 9(anchors)
    kernel_size: 1 pad: 0 stride: 1
    }
    }

    可以看到其num_output=18,也就是经过该卷积的输出图像为WxHx18大小(注意第二章开头提到的卷积计算方式)。这也就刚好对应了feature maps每一个点都有9个anchors,同时每个anchors又有可能是foreground和background,所有这些信息都保存WxHx(9*2)大小的矩阵。为何这样做?后面接softmax分类获得foreground anchors,也就相当于初步提取了检测目标候选区域box(一般认为目标在foreground anchors中)。
    那么为何要在softmax前后都接一个reshape layer?其实只是为了便于softmax分类,至于具体原因这就要从caffe的实现形式说起了。在caffe基本数据结构blob中以如下形式保存数据:

  15. blob=[batch_size, channel,height,width]
    

      对应至上面的保存bg/fg anchors的矩阵,其在caffe blob中的存储形式为[1, 2x9, H, W]。而在softmax分类时需要进行fg/bg二分类,所以reshape layer会将其变为[1, 2, 9xH, W]大小,即单独“腾空”出来一个维度以便softmax分类,之后再reshape回复原状。贴一段caffe softmax_loss_layer.cpp的reshape函数的解释,非常精辟:

    1. "Number of labels must match number of predictions; "
      "e.g., if softmax axis == 1 and prediction shape is (N, C, H, W), "
      "label count (number of labels) must be N*H*W, "
      "with integer values in {0, 1, ..., C-1}.";
    2.  综上所述,RPN网络中利用anchors和softmax初步提取出foreground anchors作为候选区域。 

6:bounding box regression原理

如图9所示绿色框为飞机的Ground Truth(GT),红色为提取的foreground anchors,即便红色的框被分类器识别为飞机,但是由于红色的框定位不准,这张图相当于没有正确的检测出飞机。所以我们希望采用一种方法对红色的框进行微调,使得foreground anchors和GT更加接近。

对于窗口一般使用四维向量  表示,分别表示窗口的中心点坐标和宽高。对于图 11,红色的框A代表原始的Foreground Anchors,绿色的框G代表目标的GT,我们的目标是寻找一种关系,使得输入原始的anchor A经过映射得到一个跟真实窗口G更接近的回归窗口G',即:

  • 给定:anchor  和 
  • 寻找一种变换F,使得:,其中

那么经过何种变换F才能从图10中的anchor A变为G'呢? 比较简单的思路就是:

  • 先做平移

  • 再做缩放

观察上面4个公式发现,需要学习的是  这四个变换。当输入的anchor A与GT相差较小时,可以认为这种变换是一种线性变换, 那么就可以用线性回归来建模对窗口进行微调(注意,只有当anchors A和GT比较接近时,才能使用线性回归模型,否则就是复杂的非线性问题了)。
接下来的问题就是如何通过线性回归获得  了。线性回归就是给定输入的特征向量X, 学习一组参数W, 使得经过线性回归后的值跟真实值Y非常接近,即。对于该问题,输入X是cnn feature map,定义为Φ;同时还有训练传入A与GT之间的变换量,即。输出是四个变换。那么目标函数可以表示为:

其中  是对应anchor的feature map组成的特征向量,  是需要学习的参数, 是得到的预测值(*表示 x,y,w,h,也就是每一个变换对应一个上述目标函数)。为了让预测值  与真实值  差距最小,设计损失函数:

函数优化目标为:

需要说明,只有在GT与需要回归框位置比较接近时,才可近似认为上述线性变换成立。
说完原理,对应于Faster RCNN原文,foreground anchor与ground truth之间的平移量  与尺度因子  如下:

对于训练bouding box regression网络回归分支,输入是cnn feature Φ,监督信号是Anchor与GT的差距 ,即训练目标是:输入 Φ的情况下使网络输出与监督信号尽可能接近。
那么当bouding box regression工作时,再输入Φ时,回归网络分支的输出就是每个Anchor的平移量和变换尺度 ,显然即可用来修正Anchor位置了。

7:对proposals进行bounding box regression

在了解bounding box regression后,再回头来看RPN网络第二条线路,如图12。

先来看一看上图11中1x1卷积的caffe prototxt定义:

layer {
name: "rpn_bbox_pred"
type: "Convolution"
bottom: "rpn/output"
top: "rpn_bbox_pred"
convolution_param {
num_output: 36 # 4 * 9(anchors)
kernel_size: 1 pad: 0 stride: 1
}
}

可以看到其 num_output=36,即经过该卷积输出图像为WxHx36,在caffe blob存储为[1, 4x9, H, W],这里相当于feature maps每个点都有9个anchors,每个anchors又都有4个用于回归的

变换量,保存中心点x,y,矩形长和宽。

8:Proposal Layer

Proposal Layer负责综合所有

变换量和foreground anchors,计算出精准的proposal,送入后续RoI Pooling Layer。还是先来看看Proposal Layer的caffe prototxt定义:

layer {
name: 'proposal'
type: 'Python'
bottom: 'rpn_cls_prob_reshape'
bottom: 'rpn_bbox_pred'
bottom: 'im_info'
top: 'rois'
python_param {
module: 'rpn.proposal_layer'
layer: 'ProposalLayer'
param_str: "'feat_stride': 16"
}
}

Proposal Layer有3个输入:fg/bg anchors分类器结果rpn_cls_prob_reshape,对应的bbox reg的

变换量rpn_bbox_pred,以及im_info;另外还有参数feat_stride=16,这和图4是对应的。
首先解释im_info。对于一副任意大小PxQ图像,传入Faster RCNN前首先reshape到固定MxN,im_info=[M, N, scale_factor]则保存了此次缩放的所有信息。然后经过Conv Layers,经过4次pooling变为WxH=(M/16)x(N/16)大小,其中feature_stride=16则保存了该信息,用于计算anchor偏移量。

Proposal Layer forward(caffe layer的前传函数)按照以下顺序依次处理:

  1. 生成anchors,利用对所有的anchors做bbox regression回归(这里的anchors生成和训练时完全一致)
  2. 按照输入的foreground softmax scores由大到小排序anchors,提取前pre_nms_topN(e.g. 6000)个anchors,即提取修正位置后的foreground anchors。
  3. 限定超出图像边界的foreground anchors为图像边界(防止后续roi pooling时proposal超出图像边界)
  4. 剔除非常小(width<threshold or height<threshold)的foreground anchors
  5. 进行nonmaximum suppression
  6. 再次按照nms后的foreground softmax scores由大到小排序fg anchors,提取前post_nms_topN(e.g. 300)结果作为proposal输出。

之后输出proposal=[x1, y1, x2, y2],注意,由于在第三步中将anchors映射回原图判断是否超出边界,所以这里输出的proposal是对应MxN输入图像尺度的,这点在后续网络中有用。另外我认为,严格意义上的检测应该到此就结束了,后续部分应该属于识别了~
RPN网络结构就介绍到这里,总结起来就是:
生成anchors -> softmax分类器提取fg anchors -> bbox reg回归fg anchors -> Proposal Layer生成proposals

9:RoI pooling

而RoI Pooling层则负责收集proposal,并计算出proposal feature maps,送入后续网络。从图2中可以看到Rol pooling层有2个输入:

    1. 原始的feature maps
    2. RPN输出的proposal boxes(大小各不相同)

对于传统的CNN(如AlexNet,VGG),当网络训练好后输入的图像尺寸必须是固定值,同时网络输出也是固定大小的vector or matrix。如果输入图像大小不定,这个问题就变得比较麻烦。有2种解决办法:

    1. 从图像中crop一部分传入网络
    2. 将图像warp成需要的大小后传入网络

两种办法的示意图如图14,可以看到无论采取那种办法都不好,要么crop后破坏了图像的完整结构,要么warp破坏了图像原始形状信息。
回忆RPN网络生成的proposals的方法:对foreground anchors进行bounding box regression,那么这样获得的proposals也是大小形状各不相同,即也存在上述问题。所以Faster R-CNN中提出了RoI Pooling解决这个问题。不过RoI Pooling确实是从Spatial Pyramid Pooling发展而来,但是限于篇幅这里略去不讲,有兴趣的读者可以自行查阅相关论文。

RoI Pooling原理

分析之前先来看看RoI Pooling Layer的caffe prototxt的定义:其中有新参数 ,

layer {
name: "roi_pool5"
type: "ROIPooling"
bottom: "conv5_3"
bottom: "rois"
top: "pool5"
roi_pooling_param {
pooled_w: 7
pooled_h: 7
spatial_scale: 0.0625 # 1/16
}
}

RoI Pooling layer forward过程:

  • 由于proposal是对应  尺度的,所以首先使用spatial_scale参数将其映射回  大小的feature map尺度;
  • 再将每个proposal对应的feature map区域水平分为  的网格;
  • 对网格的每一份都进行max pooling处理。

这样处理后,即使大小不同的proposal输出结果都是  固定大小,实现了固定长度输出。

10:Classification

Classification部分利用已经获得的proposal feature maps,通过full connect层与softmax计算每个proposal具体属于那个类别(如人,车,电视等),输出cls_prob概率向量;同时再次利用bounding box regression获得每个proposal的位置偏移量bbox_pred,用于回归更加精确的目标检测框。Classification部分网络结构如图16。

从PoI Pooling获取到7x7=49大小的proposal feature maps后,送入后续网络,可以看到做了如下2件事:

    1. 通过全连接和softmax对proposals进行分类,这实际上已经是识别的范畴了
    2. 再次对proposals进行bounding box regression,获取更高精度的rect box

这里来看看全连接层InnerProduct layers,简单的示意图如图17,

其计算公式如下:

其中W和bias B都是预先训练好的,即大小是固定的,当然输入X和输出Y也就是固定大小。所以,这也就印证了之前Roi Pooling的必要性。到这里,我想其他内容已经很容易理解,不在赘述了。

11:Faster R-CNN训练

Faster R-CNN的训练,是在已经训练好的model(如VGG_CNN_M_1024,VGG,ZF)的基础上继续进行训练。实际中训练过程分为6个步骤:

  1. 在已经训练好的model上,训练RPN网络,对应stage1_rpn_train.pt
  2. 利用步骤1中训练好的RPN网络,收集proposals,对应rpn_test.pt
  3. 第一次训练Fast RCNN网络,对应stage1_fast_rcnn_train.pt
  4. 第二训练RPN网络,对应stage2_rpn_train.pt
  5. 再次利用步骤4中训练好的RPN网络,收集proposals,对应rpn_test.pt
  6. 第二次训练Fast RCNN网络,对应stage2_fast_rcnn_train.pt

可以看到训练过程类似于一种“迭代”的过程,不过只循环了2次。至于只循环了2次的原因是应为作者提到:"A similar alternating training can be run for more iterations, but we have observed negligible improvements",即循环更多次没有提升了。接下来本章以上述6个步骤讲解训练过程。

下面是一张训练过程流程图,应该更加清晰

12:训练RPN网络

在该步骤中,首先读取RBG提供的预训练好的model(本文使用VGG),开始迭代训练。来看看stage1_rpn_train.pt网络结构,如图19。

图19 stage1_rpn_train.pt(考虑图片大小,Conv Layers中所有的层都画在一起了,如红圈所示,后续图都如此处理)

与检测网络类似的是,依然使用Conv Layers提取feature maps。整个网络使用的Loss如下:

上述公式中  表示anchors index,  表示foreground softmax probability,代表对应的GT predict概率(即当第i个anchor与GT间IoU>0.7,认为是该anchor是foreground,;反之IoU<0.3时,认为是该anchor是background,;至于那些0.3<IoU<0.7的anchor则不参与训练);代表predict bounding box,代表对应foreground anchor对应的GT box。可以看到,整个Loss分为2部分:

  1. cls loss,即rpn_cls_loss层计算的softmax loss,用于分类anchors为forground与background的网络训练
  2. reg loss,即rpn_loss_bbox层计算的soomth L1 loss,用于bounding box regression网络训练。注意在该loss中乘了  ,相当于只关心foreground anchors的回归(其实在回归中也完全没必要去关心background)。

由于在实际过程中,差距过大,用参数λ平衡二者(如时设置  ),使总的网络Loss计算过程中能够均匀考虑2种Loss。这里比较重要是  使用的soomth L1 loss,计算公式如下:

了解数学原理后,反过来看图18:

  1. 在RPN训练阶段,rpn-data(python AnchorTargetLayer)层会按照和test阶段Proposal层完全一样的方式生成Anchors用于训练
  2. 对于rpn_loss_cls,输入的rpn_cls_scors_reshape和rpn_labels分别对应  与  , 参数隐含在的caffe blob的大小中
  3. 对于rpn_loss_bbox,输入的rpn_bbox_pred和rpn_bbox_targets分别对应  与  ,rpn_bbox_inside_weigths对应 ,rpn_bbox_outside_weigths未用到(从soomth_L1_Loss layer代码中可以看到),而  同样隐含在caffe blob大小中

这样,公式与代码就完全对应了。特别需要注意的是,在训练和检测阶段生成和存储anchors的顺序完全一样,这样训练结果才能被用于检测!

13:通过训练好的RPN网络收集proposals

在该步骤中,利用之前的RPN网络,获取proposal rois,同时获取foreground softmax probability,如图20,然后将获取的信息保存在python pickle文件中。该网络本质上和检测中的RPN网络一样,没有什么区别。

图20 rpn_test.pt

14:训练Faster RCNN网络

读取之前保存的pickle文件,获取proposals与foreground probability。从data层输入网络。然后:

  1. 将提取的proposals作为rois传入网络,如图19蓝框
  2. 计算bbox_inside_weights+bbox_outside_weights,作用与RPN一样,传入soomth_L1_loss layer,如图20绿框

这样就可以训练最后的识别softmax与最终的bounding box regression了。

图21 stage1_fast_rcnn_train.pt

之后的stage2训练都是大同小异,不再赘述了。Faster R-CNN还有一种end-to-end的训练方式,可以一次完成train,有兴趣请自己看作者GitHub吧。

https://github.com/rbgirshick/py-faster-rcnn

http://www.telesens.co/2018/03/11/object-detection-and-classification-using-r-cnns/

扩展文字识别:https://zhuanlan.zhihu.com/p/34757009

Faster RCNN学习笔记的更多相关文章

  1. Faster RCNN 学习笔记

    下面的介绍都是基于VGG16 的Faster RCNN网络,各网络的差异在于Conv layers层提取特征时有细微差异,至于后续的RPN层.Pooling层及全连接的分类和目标定位基本相同. 一). ...

  2. R-CNN学习笔记

    R-CNN学习笔记 step1:总览 步骤: 输入图片 先挑选大约2000个感兴趣区域(ROI)使用select search方法:[在输入的图像中寻找blobby regions(可能相同纹理,颜色 ...

  3. Faster RCNN 学习与实现

    论文 论文翻译 Faster R-CNN 主要分为两个部分: RPN(Region Proposal Network)生成高质量的 region proposal: Fast R-CNN 利用 reg ...

  4. Mask RCNN 学习笔记

    下面会介绍基于ResNet50的Mask RCNN网络,其中会涉及到RPN.FPN.ROIAlign以及分类.回归使用的损失函数等 介绍时所采用的MaskRCNN源码(python版本)来源于GitH ...

  5. Faster RCNN代码理解(Python)

    转自http://www.infocool.net/kb/Python/201611/209696.html#原文地址 第一步,准备 从train_faster_rcnn_alt_opt.py入: 初 ...

  6. [目标检测] 从 R-CNN 到 Faster R-CNN

    R-CNN 创新点 经典的目标检测算法使用滑动窗法依次判断所有可能的区域,提取人工设定的特征(HOG,SIFT).本文则预先提取一系列较可能是物体的候选区域,之后仅在这些候选区域上用深度网络提取特征, ...

  7. Faster R-CNN代码例子

    主要参考文章:1,从编程实现角度学习Faster R-CNN(附极简实现) 经常是做到一半发现收敛情况不理想,然后又回去看看这篇文章的细节. 另外两篇: 2,Faster R-CNN学习总结      ...

  8. 深度学习笔记之目标检测算法系列(包括RCNN、Fast RCNN、Faster RCNN和SSD)

    不多说,直接上干货! 本文一系列目标检测算法:RCNN, Fast RCNN, Faster RCNN代表当下目标检测的前沿水平,在github都给出了基于Caffe的源码. •   RCNN RCN ...

  9. 论文笔记:目标检测算法(R-CNN,Fast R-CNN,Faster R-CNN,FPN,YOLOv1-v3)

    R-CNN(Region-based CNN) motivation:之前的视觉任务大多数考虑使用SIFT和HOG特征,而近年来CNN和ImageNet的出现使得图像分类问题取得重大突破,那么这方面的 ...

随机推荐

  1. Build Telemetry for Distributed Services之OpenTracing简介

    官网地址:https://opentracing.io/ What is Distributed Tracing? Who Uses Distributed Tracing? What is Open ...

  2. Spring Cloud(5):服务路由(Zuul)

    Zuul简介 所有微服务之间的调用,都应该通过服务网关进行路由,服务网关充当服务与服务之间的中介.服务网关像交通警察一样指挥交通,将用户引导到目标微服务实例.服务网关还充当着应用程序内所有微服务调用的 ...

  3. 【leetcode_easy】543. Diameter of Binary Tree

    problem 543. Diameter of Binary Tree 题意: 转换一种角度来看,是不是其实就是根结点1的左右两个子树的深度之和呢.那么我们只要对每一个结点求出其左右子树深度之和,这 ...

  4. 深入理解Attention机制

    要了解深度学习中的注意力模型,就不得不先谈Encoder-Decoder框架,因为目前大多数注意力模型附着在Encoder-Decoder框架下,当然,其实注意力模型可以看作一种通用的思想,本身并不依 ...

  5. webstorm关闭vim模式

  6. 使用 bash 脚本把 GCE 的数据备份到 GCS

    目录 一.Google Cloud Storge 介绍 1.1.四种存储类别的比较 1.2.需求 1.3.给虚拟机添加授权认证 二.备份操作 2.1 创建存储分区 2.2 上传对象到存储分区 2.3 ...

  7. Cache数据库新增用户并分配权限(Caché)

    1.通过浏览器登录管理中心,Caché自带的客户端工具是网页的,访问地址:     http://localhost:57772/csp/sys/UtilHome.csp 2.选择功能链接:系统管理- ...

  8. 微信小程序的场景值scene

    根据微信小程序返回给我们的场景值,我们可以根据不同的场景做出不同的处理,更加方便我们对使用场景的划分 当前支持的场景值有: :发现栏小程序主入口,“最近使用”列表(基础库2..4版本起将包含“我的小程 ...

  9. Flutter 轻量级的ToolTip控件

    轻提示的效果在应用中是少不了的,其实Flutter已经准备好了轻提示控件,这就是toolTip. 轻量级操作提示 其实Flutter中有很多提示控件,比如Dialog.Snackbar和BottomS ...

  10. ”Unstanding the Bias-Variance Tradeoff“主题内容翻译

    对预测模型讨论,预测误差(error)分两类:偏差(bias)造成的误差与方差(variance)造成的误差.最小化偏差与方差的一个权衡.理解这两类误差有利于诊断模型结果和避免过拟合和欠拟合. 偏差与 ...