【新词发现】基于SNS的文本数据挖掘、短语挖掘
互联网时代的社会语言学:基于SNS的文本数据挖掘
python实现 https://github.com/jtyoui/Jtyoui/tree/master/jtyoui/word 这是一个无监督训练文本词库与分词 (转载)
java实现 https://gitee.com/tyoui/jsns 这个速度要快一点。逻辑比较清楚些(转载)
更多实现见文章末尾:
实现原理如下:(转载)http://www.matrix67.com/blog/archives/5044
今年上半年,我在人人网实习了一段时间,期间得到了很多宝贵的数据,并做了一些还算有意义的事情,在这里和大家一块儿分享。感谢人人网提供的数据与工作环境,感谢赵继承博士、詹卫东老师的支持和建议。在这项工作中,我得到了很多与众人交流的机会,特别感谢 OpenParty 、 TEDxBeijing 提供的平台。本文已发表在了《程序员》杂志,分上下两部分刊于 2012 年 7 月刊和 8 月刊,在此感谢卢鸫翔编辑的辛勤工作。由于众所周知的原因,《程序员》刊出的文章被和谐过(看到后面大家就自动地知道被和谐的内容是什么了),因而我决定把完整版发在 Blog 上,同时与更多的人一同分享。对此感兴趣的朋友可以给我发邮件继续交流。好了,开始说正文吧。
作为中文系应用语言学专业的学生以及一名数学 Geek ,我非常热衷于用计算的方法去分析汉语资料。汉语是一种独特而神奇的语言。对汉语资料进行自然语言处理时,我们会遇到很多其他语言不会有的困难,比如分词——汉语的词与词之间没有空格,那计算机怎么才知道,“已结婚的和尚未结婚的青年都要实行计划生育”究竟说的是“已/结婚/的/和/尚未/结婚/的/青年”,还是“已/结婚/的/和尚/未/结婚/的/青年”呢?这就是所谓的分词歧义难题。不过,现在很多语言模型已经能比较漂亮地解决这一问题了。但在中文分词领域里,还有一个比分词歧义更令人头疼的东西——未登录词。中文没有首字母大写,专名号也被取消了,这叫计算机如何辨认人名地名之类的东西?更惨的则是机构名、品牌名、专业名词、缩略语、网络新词等等,它们的产生机制似乎完全无规律可寻。最近十年来,中文分词领域都在集中攻克这一难关。自动发现新词成为了关键的环节。
挖掘新词的传统方法是,先对文本进行分词,然后猜测未能成功匹配的剩余片段就是新词。这似乎陷入了一个怪圈:分词的准确性本身就依赖于词库的完整性,如果词库中根本没有新词,我们又怎么能信任分词结果呢?此时,一种大胆的想法是,首先不依赖于任何已有的词库,仅仅根据词的共同特征,将一段大规模语料中可能成词的文本片段全部提取出来,不管它是新词还是旧词。然后,再把所有抽出来的词和已有词库进行比较,不就能找出新词了吗?有了抽词算法后,我们还能以词为单位做更多有趣的数据挖掘工作。这里,我所选用的语料是人人网 2011 年 12 月前半个月部分用户的状态。非常感谢人人网提供这份极具价值的网络语料。
要想从一段文本中抽出词来,我们的第一个问题就是,怎样的文本片段才算一个词?大家想到的第一个标准或许是,看这个文本片段出现的次数是否足够多。我们可以把所有出现频数超过某个阈值的片段提取出来,作为该语料中的词汇输出。不过,光是出现频数高还不够,一个经常出现的文本片段有可能不是一个词,而是多个词构成的词组。在人人网用户状态中,“的电影”出现了 389 次,“电影院”只出现了 175 次,然而我们却更倾向于把“电影院”当作一个词,因为直觉上看,“电影”和“院”凝固得更紧一些。
为了证明“电影院”一词的内部凝固程度确实很高,我们可以计算一下,如果“电影”和“院”真的是各自独立地在文本中随机出现,它俩正好拼到一起的概率会有多小。在整个 2400 万字的数据中,“电影”一共出现了 2774 次,出现的概率约为 0.000113 。“院”字则出现了 4797 次,出现的概率约为 0.0001969 。如果两者之间真的毫无关系,它们恰好拼在了一起的概率就应该是 0.000113 × 0.0001969 ,约为 2.223 × 10-8 次方。但事实上,“电影院”在语料中一共出现了 175 次,出现概率约为 7.183 × 10-6 次方,是预测值的 300 多倍。类似地,统计可得“的”字的出现概率约为 0.0166 ,因而“的”和“电影”随机组合到了一起的理论概率值为 0.0166 × 0.000113 ,约为 1.875 × 10-6 ,这与“的电影”出现的真实概率很接近——真实概率约为 1.6 × 10-5 次方,是预测值的 8.5 倍。计算结果表明,“电影院”更可能是一个有意义的搭配,而“的电影”则更像是“的”和“电影”这两个成分偶然拼到一起的。
当然,作为一个无知识库的抽词程序,我们并不知道“电影院”是“电影”加“院”得来的,也并不知道“的电影”是“的”加上“电影”得来的。错误的切分方法会过高地估计该片段的凝合程度。如果我们把“电影院”看作是“电”加“影院”所得,由此得到的凝合程度会更高一些。因此,为了算出一个文本片段的凝合程度,我们需要枚举它的凝合方式——这个文本片段是由哪两部分组合而来的。令 p(x) 为文本片段 x 在整个语料中出现的概率,那么我们定义“电影院”的凝合程度就是 p(电影院) 与 p(电) · p(影院) 比值和 p(电影院) 与 p(电影) · p(院) 的比值中的较小值,“的电影”的凝合程度则是 p(的电影) 分别除以 p(的) · p(电影) 和 p(的电) · p(影) 所得的熵的较小值。
可以想到,凝合程度最高的文本片段就是诸如“蝙蝠”、“蜘蛛”、“彷徨”、“忐忑”、“玫瑰”之类的词了,这些词里的每一个字几乎总是会和另一个字同时出现,从不在其他场合中使用。
光看文本片段内部的凝合程度还不够,我们还需要从整体来看它在外部的表现。考虑“被子”和“辈子”这两个片段。我们可以说“买被子”、“盖被子”、“进被子”、“好被子”、“这被子”等等,在“被子”前面加各种字;但“辈子”的用法却非常固定,除了“一辈子”、“这辈子”、“上辈子”、“下辈子”,基本上“辈子”前面不能加别的字了。“辈子”这个文本片段左边可以出现的字太有限,以至于直觉上我们可能会认为,“辈子”并不单独成词,真正成词的其实是“一辈子”、“这辈子”之类的整体。可见,文本片段的自由运用程度也是判断它是否成词的重要标准。如果一个文本片段能够算作一个词的话,它应该能够灵活地出现在各种不同的环境中,具有非常丰富的左邻字集合和右邻字集合。
“信息熵”是一个非常神奇的概念,它能够反映知道一个事件的结果后平均会给你带来多大的信息量。如果某个结果的发生概率为 p ,当你知道它确实发生了,你得到的信息量就被定义为 – log(p) 。 p 越小,你得到的信息量就越大。如果一颗骰子的六个面分别是 1 、 1 、 1 、 2 、 2 、 3 ,那么你知道了投掷的结果是 1 时可能并不会那么吃惊,它给你带来的信息量是 – log(1/2) ,约为 0.693 。知道投掷结果是 2 ,给你带来的信息量则是 – log(1/3) ≈ 1.0986 。知道投掷结果是 3 ,给你带来的信息量则有 – log(1/6) ≈ 1.79 。但是,你只有 1/2 的机会得到 0.693 的信息量,只有 1/3 的机会得到 1.0986 的信息量,只有 1/6 的机会得到 1.79 的信息量,因而平均情况下你会得到 0.693/2 + 1.0986/3 + 1.79/6 ≈ 1.0114 的信息量。这个 1.0114 就是那颗骰子的信息熵。现在,假如某颗骰子有 100 个面,其中 99 个面都是 1 ,只有一个面上写的 2 。知道骰子的抛掷结果是 2 会给你带来一个巨大无比的信息量,它等于 – log(1/100) ,约为 4.605 ;但你只有百分之一的概率获取到这么大的信息量,其他情况下你只能得到 – log(99/100) ≈ 0.01005 的信息量。平均情况下,你只能获得 0.056 的信息量,这就是这颗骰子的信息熵。再考虑一个最极端的情况:如果一颗骰子的六个面都是 1 ,投掷它不会给你带来任何信息,它的信息熵为 – log(1) = 0 。什么时候信息熵会更大呢?换句话说,发生了怎样的事件之后,你最想问一下它的结果如何?直觉上看,当然就是那些结果最不确定的事件。没错,信息熵直观地反映了一个事件的结果有多么的随机。
我们用信息熵来衡量一个文本片段的左邻字集合和右邻字集合有多随机。考虑这么一句话“吃葡萄不吐葡萄皮不吃葡萄倒吐葡萄皮”,“葡萄”一词出现了四次,其中左邻字分别为 {吃, 吐, 吃, 吐} ,右邻字分别为 {不, 皮, 倒, 皮} 。根据公式,“葡萄”一词的左邻字的信息熵为 – (1/2) · log(1/2) – (1/2) · log(1/2) ≈ 0.693 ,它的右邻字的信息熵则为 – (1/2) · log(1/2) – (1/4) · log(1/4) – (1/4) · log(1/4) ≈ 1.04 。可见,在这个句子中,“葡萄”一词的右邻字更加丰富一些。
在人人网用户状态中,“被子”一词一共出现了 956 次,“辈子”一词一共出现了 2330 次,两者的右邻字集合的信息熵分别为 3.87404 和 4.11644 ,数值上非常接近。但“被子”的左邻字用例非常丰富:用得最多的是“晒被子”,它一共出现了 162 次;其次是“的被子”,出现了 85 次;接下来分别是“条被子”、“在被子”、“床被子”,分别出现了 69 次、 64 次和 52 次;当然,还有“叠被子”、“盖被子”、“加被子”、“新被子”、“掀被子”、“收被子”、“薄被子”、“踢被子”、“抢被子”等 100 多种不同的用法构成的长尾⋯⋯所有左邻字的信息熵为 3.67453 。但“辈子”的左邻字就很可怜了, 2330 个“辈子”中有 1276 个是“一辈子”,有 596 个“这辈子”,有 235 个“下辈子”,有 149 个“上辈子”,有 32 个“半辈子”,有 10 个“八辈子”,有 7 个“几辈子”,有 6 个“哪辈子”,以及“n 辈子”、“两辈子”等 13 种更罕见的用法。所有左邻字的信息熵仅为 1.25963 。因而,“辈子”能否成词,明显就有争议了。“下子”则是更典型的例子, 310 个“下子”的用例中有 294 个出自“一下子”, 5 个出自“两下子”, 5 个出自“这下子”,其余的都是只出现过一次的罕见用法。事实上,“下子”的左邻字信息熵仅为 0.294421 ,我们不应该把它看作一个能灵活运用的词。当然,一些文本片段的左邻字没啥问题,右邻字用例却非常贫乏,例如“交响”、“后遗”、“鹅卵”等,把它们看作单独的词似乎也不太合适。我们不妨就把一个文本片段的自由运用程度定义为它的左邻字信息熵和右邻字信息熵中的较小值。
在实际运用中你会发现,文本片段的凝固程度和自由程度,两种判断标准缺一不可。只看凝固程度的话,程序会找出“巧克”、“俄罗”、“颜六色”、“柴可夫”等实际上是“半个词”的片段;只看自由程度的话,程序则会把“吃了一顿”、“看了一遍”、“睡了一晚”、“去了一趟”中的“了一”提取出来,因为它的左右邻字都太丰富了。
我们把文本中出现过的所有长度不超过 d 的子串都当作潜在的词(即候选词,其中 d 为自己设定的候选词长度上限,我设定的值为 5 ),再为出现频数、凝固程度和自由程度各设定一个阈值,然后只需要提取出所有满足阈值要求的候选词即可。为了提高效率,我们可以把语料全文视作一整个字符串,并对该字符串的所有后缀按字典序排序。下表就是对“四是四十是十十四是十四四十是四十”的所有后缀进行排序后的结果。实际上我们只需要在内存中存储这些后缀的前 d + 1 个字,或者更好地,只储存它们在语料中的起始位置。
更多见原文 http://www.matrix67.com/blog/archives/5044
更多相关实现:
我把楼主的算法用python实现,并进行一些必要的优化,并加入到我的分词库里。开源的分词库地址:https://github.com/jannson/yaha
实现在 yaha/wordmaker.py里
实用示例在 tests/test_cuttor.py里
欢迎大家进行测试。6M以下的文本问题不大,如若要分析更大的文本,后续会添加一个c++实现的版本,测试发现比python快 10倍
https://github.com/sing1ee/dict_build 这个简单用java实现了,看效果还不错。挺好玩的。
C++11/14实现了一个,写得渣勿喷。。 https://github.com/zouyxdut/new-words-discoverer
成词条件
互信息
左右熵
位置成词概率
ngram 频率 自动构建中文词库:http://www.matrix67.com/blog/archives/5044
python 3 實現:
https://github.com/yanghanxy/New-Word-Detection
Python 3 实现了一个,(新) Neologism https://github.com/jtyoui/Jtyoui/tree/master/jtyoui/word
【新词发现】基于SNS的文本数据挖掘、短语挖掘的更多相关文章
- 互联网时代的社会语言学:基于SNS的文本数据挖掘
今年上半年,我在人人网实习了一段时间,期间得到了很多宝贵的数据,并做了一些还算有意义的事情,在这里和大家一块儿分享.感谢人人网提供的数据 与工作环境,感谢赵继承博士.詹卫东老师的支持和建议.在这项工作 ...
- python3实现互信息和左右熵的新词发现--基于字典树
字典树 原来讲明白了剩下的就是具体实现了,最适合存储和计算词频的数据结构就是字典树,这里给一个讲解的很清楚的链接 具体代码 代码已开源,需要的点击这个Github
- 用python实现新词发现程序——基于凝固度和自由度
互联网时代,信息产生的数量和传递的速度非常快,语言文字也不断变化更新,新词层出不穷.一个好的新词发现程序对做NLP(自然预言处理)来说是非常重要的. N-Gram加词频 最原始的新词算法莫过于n-gr ...
- 文本数据挖掘 Matrix67: The Aha Moments
转自:http://www.matrix67.com/blog/archives/5044 互联网时代的社会语言学:基于SNS的文本数据挖掘 今年上半年,我在人人网实习了一段时间,期间得到了很多宝贵的 ...
- 基于大规模语料的新词发现算法【转自matix67】
最近需要对商品中的特有的词识别,因此需新词发现算法,matrix的这篇算法很好. 对中文资料进行自然语言处理时,我们会遇到很多其他语言不会有的困难,例如分词——汉语的词与词之间没有空格,那计算机怎么才 ...
- 大数据时代:基于微软案例数据库数据挖掘知识点总结(Microsoft 聚类分析算法)
原文:(原创)大数据时代:基于微软案例数据库数据挖掘知识点总结(Microsoft 聚类分析算法) 本篇文章主要是继续上一篇Microsoft决策树分析算法后,采用另外一种分析算法对目标顾客群体的挖掘 ...
- 基于 Spark 的文本情感分析
转载自:https://www.ibm.com/developerworks/cn/cognitive/library/cc-1606-spark-seniment-analysis/index.ht ...
- tensorflow实现基于LSTM的文本分类方法
tensorflow实现基于LSTM的文本分类方法 作者:u010223750 引言 学习一段时间的tensor flow之后,想找个项目试试手,然后想起了之前在看Theano教程中的一个文本分类的实 ...
- 一文详解如何用 TensorFlow 实现基于 LSTM 的文本分类(附源码)
雷锋网按:本文作者陆池,原文载于作者个人博客,雷锋网已获授权. 引言 学习一段时间的tensor flow之后,想找个项目试试手,然后想起了之前在看Theano教程中的一个文本分类的实例,这个星期就用 ...
随机推荐
- C# EF添加ADO.NET实体数据模型时,产生.Desiger.cs文件为空
// T4 code generation is enabled for model 'D:\DKX4003\work\VWFC_CCS\SrcCCG-branch\CCGSPBOCOne-FCA\C ...
- 扩展kmp入门+比赛模板
https://wenku.baidu.com/view/8e9ebefb0242a8956bece4b3.html 参考了这个ppt 理解起来还是有点费劲的(还是推荐一下这个课件 里面概念和思路给的 ...
- 十大经典排序【Java实现,手工作坊式】
终于把排序这个硬骨头,但是又很基础的知识点,自己手撕了一遍!之前,使用Python看着算法导论的书手撕过一遍,印象不是很深刻,容易忘记!好记性不如烂笔头!多自己思考解决问题 1,交换类CAS[最简单] ...
- SQL Server 2017 左补齐
DECLARE @NUM CHAR(3)='7 'SELECT RIGHT('0000000'+CONVERT(VARCHAR(50),1+ RTRIM(@NUM)),7)
- Scientific Toolworks Understand for linux
Scientific Toolworks Understand for linux 这个软件我找了很久了,一直没有找到合适能装的.现在这款能在linux上顺利运行的版本,共享给需要的TX们. 个人觉得 ...
- 案例:selenium实现登录百度(如有验证码,需要手动输入)
func.py https://www.cnblogs.com/andy9468/p/10899508.html baidu_login.py中(如有验证码,需要手动输入) # 导入webdriver ...
- spring-security2配置精讲(转载)
本文转载自牛人downpour的帖子: http://www.iteye.com/topic/319965 Spring 论坛上看了不少Spring Security的相关文章.这些文章基本上都还是基 ...
- ubuntu 14.04 登录 界面 root
打开终端. sudo gedit /usr/share/lightdm/lightdm.conf.d/50-ubuntu.conf 在弹出的编辑框里输入:greeter-show-manual-log ...
- C#中两个List<TModel>中根据指定条件--判断并获取不同数据的数据集合2
方式一:Linq List<Test> list = new List<Test>(); list.Add(new Test { score = 10, name = &quo ...
- Lucene简单了解和使用
一,Lucene简介 1 . Lucene 是什么? Lucene 是一个开放源代码的全文检索引擎工具包,但它不是一个完整的全文检索引擎,而是一个全文检索引擎的架构,提供了完整的查询引擎和索引引擎, ...