进程间通信(IPC,InterProcess Communication)是指在不同进程之间传播或交换信息。

IPC的方式通常有管道(包括无名管道和命名管道)、消息队列、信号量、共享存储、Socket、Streams等。其中 Socket和Streams支持不同主机上的两个进程IPC。

以Linux中的C语言编程为例。

一、管道

管道,通常指无名管道,是 UNIX 系统IPC最古老的形式。

1、特点:

它是半双工的(即数据只能在一个方向上流动),具有固定的读端和写端。

它只能用于具有亲缘关系的进程之间的通信(也是父子进程或者兄弟进程之间)。

它可以看成是一种特殊的文件,对于它的读写也可以使用普通的read、write 等函数。但是它不是普通的文件,并不属于其他任何文件系统,并且只存在于内存中。

2、原型:

#include <unistd.h>

int pipe(int fd[2]);    // 返回值:若成功返回0,失败返回-1

当一个管道建立时,它会创建两个文件描述符:fd[0]为读而打开,fd[1]为写而打开。如下图:

要关闭管道只需将这两个文件描述符关闭即可。

3、例子

单个进程中的管道几乎没有任何用处。所以,通常调用 pipe 的进程接着调用 fork,这样就创建了父进程与子进程之间的 IPC 通道。如下图所示:

若要数据流从父进程流向子进程,则关闭父进程的读端(fd[0])与子进程的写端(fd[1]);反之,则可以使数据流从子进程流向父进程。

#include<stdio.h>

#include<unistd.h>

int main()

{

int fd[2];  // 两个文件描述符

pid_t pid;

char buff[20];

if(pipe(fd) < 0)  // 创建管道

printf("Create Pipe Error!\n");

if((pid = fork()) < 0)  // 创建子进程

printf("Fork Error!\n");

else if(pid > 0)  // 父进程

{

close(fd[0]); // 关闭读端

write(fd[1], "hello world\n", 12);

}

else

{

close(fd[1]); // 关闭写端

read(fd[0], buff, 20);

printf("%s", buff);

}

return 0;

}

二、FIFO

FIFO,也称为命名管道,它是一种文件类型。

1、特点

FIFO可以在无关的进程之间交换数据,与无名管道不同。

FIFO有路径名与之相关联,它以一种特殊设备文件形式存在于文件系统中。

2、原型

#include <sys/stat.h>

// 返回值:成功返回0,出错返回-1

int mkfifo(const char *pathname, mode_t mode);

其中的 mode 参数与open函数中的 mode 相同。一旦创建了一个 FIFO,就可以用一般的文件I/O函数操作它。

当 open 一个FIFO时,是否设置非阻塞标志(O_NONBLOCK)的区别:

若没有指定O_NONBLOCK(默认),只读 open 要阻塞到某个其他进程为写而打开此 FIFO。类似的,只写 open 要阻塞到某个其他进程为读而打开它。

若指定了O_NONBLOCK,则只读 open 立即返回。而只写 open 将出错返回 -1 如果没有进程已经为读而打开该 FIFO,其errno置ENXIO。

3、例子

FIFO的通信方式类似于在进程中使用文件来传输数据,只不过FIFO类型文件同时具有管道的特性。在数据读出时,FIFO管道中同时清除数据,并且“先进先出”。下面的例子演示了使用 FIFO 进行 IPC 的过程:

write_fifo.c

#include<stdio.h>

#include<stdlib.h>  // exit

#include<fcntl.h>    // O_WRONLY

#include<sys/stat.h>

#include<time.h>    // time

int main()

{

int fd;

int n, i;

char buf[1024];

time_t tp;

printf("I am %d process.\n", getpid()); // 说明进程ID

if((fd = open("fifo1", O_WRONLY)) < 0) // 以写打开一个FIFO

{

perror("Open FIFO Failed");

exit(1);

}

for(i=0; i<10; ++i)

{

time(&tp);  // 取系统当前时间

n=sprintf(buf,"Process %d's time is %s",getpid(),ctime(&tp));

printf("Send message: %s", buf); // 打印

if(write(fd, buf, n+1) < 0)  // 写入到FIFO中

{

perror("Write FIFO Failed");

close(fd);

exit(1);

}

sleep(1);  // 休眠1秒

}

close(fd);  // 关闭FIFO文件

return 0;

}

read_fifo.c

#include<stdio.h>

#include<stdlib.h>

#include<errno.h>

#include<fcntl.h>

#include<sys/stat.h>

int main()

{

int fd;

int len;

char buf[1024];

if(mkfifo("fifo1", 0666) < 0 && errno!=EEXIST) // 创建FIFO管道

perror("Create FIFO Failed");

if((fd = open("fifo1", O_RDONLY)) < 0)  // 以读打开FIFO

{

perror("Open FIFO Failed");

exit(1);

}

while((len = read(fd, buf, 1024)) > 0) // 读取FIFO管道

printf("Read message: %s", buf);

close(fd);  // 关闭FIFO文件

return 0;

}

在两个终端里用 gcc 分别编译运行上面两个文件,可以看到输出结果如下:

[cheesezh@localhost]$ ./write_fifo

I am 5954 process.

Send message: Process 5954's time is Mon Apr 20 12:37:28 2015

Send message: Process 5954's time is Mon Apr 20 12:37:29 2015

Send message: Process 5954's time is Mon Apr 20 12:37:30 2015

Send message: Process 5954's time is Mon Apr 20 12:37:31 2015

Send message: Process 5954's time is Mon Apr 20 12:37:32 2015

Send message: Process 5954's time is Mon Apr 20 12:37:33 2015

Send message: Process 5954's time is Mon Apr 20 12:37:34 2015

Send message: Process 5954's time is Mon Apr 20 12:37:35 2015

Send message: Process 5954's time is Mon Apr 20 12:37:36 2015

Send message: Process 5954's time is Mon Apr 20 12:37:37 2015

[cheesezh@localhost]$ ./read_fifo

Read message: Process 5954's time is Mon Apr 20 12:37:28 2015

Read message: Process 5954's time is Mon Apr 20 12:37:29 2015

Read message: Process 5954's time is Mon Apr 20 12:37:30 2015

Read message: Process 5954's time is Mon Apr 20 12:37:31 2015

Read message: Process 5954's time is Mon Apr 20 12:37:32 2015

Read message: Process 5954's time is Mon Apr 20 12:37:33 2015

Read message: Process 5954's time is Mon Apr 20 12:37:34 2015

Read message: Process 5954's time is Mon Apr 20 12:37:35 2015

Read message: Process 5954's time is Mon Apr 20 12:37:36 2015

Read message: Process 5954's time is Mon Apr 20 12:37:37 2015

上述例子可以扩展成 客户进程—服务器进程 通信的实例,write_fifo的作用类似于客户端,可以打开多个客户端向一个服务器发送请求信息,read_fifo类似于服务器,它适时监控着FIFO的读端,当有数据时,读出并进行处理,但是有一个关键的问题是,每一个客户端必须预先知道服务器提供的FIFO接口,下图显示了这种安排:

三、消息队列

消息队列,是消息的链接表,存放在内核中。一个消息队列由一个标识符(即队列ID)来标识。

1、特点

消息队列是面向记录的,其中的消息具有特定的格式以及特定的优先级。

消息队列独立于发送与接收进程。进程终止时,消息队列及其内容并不会被删除。

消息队列可以实现消息的随机查询,消息不一定要以先进先出的次序读取,也可以按消息的类型读取。

2、原型

#include <sys/msg.h>

// 创建或打开消息队列:成功返回队列ID,失败返回-1

int msgget(key_t key, int flag);

// 添加消息:成功返回0,失败返回-1

int msgsnd(int msqid, const void *ptr, size_t size, int flag);

// 读取消息:成功返回消息数据的长度,失败返回-1

int msgrcv(int msqid, void *ptr, size_t size, long type,int flag);

// 控制消息队列:成功返回0,失败返回-1

int msgctl(int msqid, int cmd, struct msqid_ds *buf);

在以下两种情况下,msgget将创建一个新的消息队列:

如果没有与键值key相对应的消息队列,并且flag中包含了IPC_CREAT标志位。

key参数为IPC_PRIVATE

函数msgrcv在读取消息队列时,type参数有下面几种情况:

type == 0,返回队列中的第一个消息;

type > 0,返回队列中消息类型为 type 的第一个消息;

type < 0,返回队列中消息类型值小于或等于 type 绝对值的消息,如果有多个,则取类型值最小的消息。

可以看出,type值非 0 时用于以非先进先出次序读消息。也可以把 type 看做优先级的权值。(其他的参数解释,请自行Google之)

3、例子

下面写了一个简单的使用消息队列进行IPC的例子,服务端程序一直在等待特定类型的消息,当收到该类型的消息以后,发送另一种特定类型的消息作为反馈,客户端读取该反馈并打印出来。

msg_server.c

#include <stdio.h>

#include <stdlib.h>

#include <sys/msg.h>

// 用于创建一个唯一的key

#define MSG_FILE "/etc/passwd"

// 消息结构

struct msg_form {

long mtype;

char mtext[256];

};

int main()

{

int msqid;

key_t key;

struct msg_form msg;

// 获取key值

if((key = ftok(MSG_FILE,'z')) < 0)

{

perror("ftok error");

exit(1);

}

// 打印key值

printf("Message Queue - Server key is: %d.\n", key);

// 创建消息队列

if ((msqid = msgget(key, IPC_CREAT|0777)) == -1)

{

perror("msgget error");

exit(1);

}

// 打印消息队列ID及进程ID

printf("My msqid is: %d.\n", msqid);

printf("My pid is: %d.\n", getpid());

// 循环读取消息

for(;;)

{

msgrcv(msqid, &msg, 256, 888, 0);// 返回类型为888的第一个消息

printf("Server: receive msg.mtext is: %s.\n", msg.mtext);

printf("Server: receive msg.mtype is: %d.\n", msg.mtype);

msg.mtype = 999; // 客户端接收的消息类型

sprintf(msg.mtext, "hello, I'm server %d", getpid());

msgsnd(msqid, &msg, sizeof(msg.mtext), 0);

}

return 0;

}

msg_client.c

#include <stdio.h>

#include <stdlib.h>

#include <sys/msg.h>

// 用于创建一个唯一的key

#define MSG_FILE "/etc/passwd"

// 消息结构

struct msg_form {

long mtype;

char mtext[256];

};

int main()

{

int msqid;

key_t key;

struct msg_form msg;

// 获取key值

if ((key = ftok(MSG_FILE, 'z')) < 0)

{

perror("ftok error");

exit(1);

}

// 打印key值

printf("Message Queue - Client key is: %d.\n", key);

// 打开消息队列

if ((msqid = msgget(key, IPC_CREAT|0777)) == -1)

{

perror("msgget error");

exit(1);

}

// 打印消息队列ID及进程ID

printf("My msqid is: %d.\n", msqid);

printf("My pid is: %d.\n", getpid());

// 添加消息,类型为888

msg.mtype = 888;

sprintf(msg.mtext, "hello, I'm client %d", getpid());

msgsnd(msqid, &msg, sizeof(msg.mtext), 0);

// 读取类型为777的消息

msgrcv(msqid, &msg, 256, 999, 0);

printf("Client: receive msg.mtext is: %s.\n", msg.mtext);

printf("Client: receive msg.mtype is: %d.\n", msg.mtype);

return 0;

}

四、信号量

信号量(semaphore)与已经介绍过的 IPC 结构不同,它是一个计数器。信号量用于实现进程间的互斥与同步,而不是用于存储进程间通信数据。

1、特点

信号量用于进程间同步,若要在进程间传递数据需要结合共享内存。

信号量基于操作系统的 PV 操作,程序对信号量的操作都是原子操作。

每次对信号量的 PV 操作不仅限于对信号量值加 1 或减 1,而且可以加减任意正整数。

支持信号量组。

2、原型

最简单的信号量是只能取 0 和 1 的变量,这也是信号量最常见的一种形式,叫做二值信号量(Binary Semaphore)。而可以取多个正整数的信号量被称为通用信号量。

Linux 下的信号量函数都是在通用的信号量数组上进行操作,而不是在一个单一的二值信号量上进行操作。

#include <sys/sem.h>

// 创建或获取一个信号量组:若成功返回信号量集ID,失败返回-1

int semget(key_t key, int num_sems, int sem_flags);

// 对信号量组进行操作,改变信号量的值:成功返回0,失败返回-1

int semop(int semid, struct sembuf semoparray[], size_t numops);

// 控制信号量的相关信息

int semctl(int semid, int sem_num, int cmd, ...);

当semget创建新的信号量集合时,必须指定集合中信号量的个数(即num_sems),通常为1; 如果是引用一个现有的集合,则将num_sems指定为 0 。

在semop函数中,sembuf结构的定义如下:

struct sembuf

{

short sem_num; // 信号量组中对应的序号,0~sem_nums-1

short sem_op;  // 信号量值在一次操作中的改变量

short sem_flg; // IPC_NOWAIT, SEM_UNDO

}

其中 sem_op 是一次操作中的信号量的改变量:

若sem_op > 0,表示进程释放相应的资源数,将 sem_op 的值加到信号量的值上。如果有进程正在休眠等待此信号量,则换行它们。

若sem_op < 0,请求 sem_op 的绝对值的资源。

如果相应的资源数可以满足请求,则将该信号量的值减去sem_op的绝对值,函数成功返回。

当相应的资源数不能满足请求时,这个操作与sem_flg有关。

sem_flg 指定IPC_NOWAIT,则semop函数出错返回EAGAIN。

sem_flg 没有指定IPC_NOWAIT,则将该信号量的semncnt值加1,然后进程挂起直到下述情况发生:

当相应的资源数可以满足请求,此信号量的semncnt值减1,该信号量的值减去sem_op的绝对值。成功返回;

此信号量被删除,函数smeop出错返回EIDRM;

进程捕捉到信号,并从信号处理函数返回,此情况下将此信号量的semncnt值减1,函数semop出错返回EINTR

若sem_op == 0,进程阻塞直到信号量的相应值为0:

当信号量已经为0,函数立即返回。

如果信号量的值不为0,则依据sem_flg决定函数动作:

sem_flg指定IPC_NOWAIT,则出错返回EAGAIN。

sem_flg没有指定IPC_NOWAIT,则将该信号量的semncnt值加1,然后进程挂起直到下述情况发生:

信号量值为0,将信号量的semzcnt的值减1,函数semop成功返回;

此信号量被删除,函数smeop出错返回EIDRM;

进程捕捉到信号,并从信号处理函数返回,在此情况将此信号量的semncnt值减1,函数semop出错返回EINTR

在semctl函数中的命令有多种,这里就说两个常用的:

SETVAL:用于初始化信号量为一个已知的值。所需要的值作为联合semun的val成员来传递。在信号量第一次使用之前需要设置信号量。

IPC_RMID:删除一个信号量集合。如果不删除信号量,它将继续在系统中存在,即使程序已经退出,它可能在你下次运行此程序时引发问题,而且信号量是一种有限的资源。

3、例子

#include<stdio.h>

#include<stdlib.h>

#include<sys/sem.h>

// 联合体,用于semctl初始化

union semun

{

int              val; /*for SETVAL*/

struct semid_ds *buf;

unsigned short  *array;

};

// 初始化信号量

int init_sem(int sem_id, int value)

{

union semun tmp;

tmp.val = value;

if(semctl(sem_id, 0, SETVAL, tmp) == -1)

{

perror("Init Semaphore Error");

return -1;

}

return 0;

}

// P操作:

//    若信号量值为1,获取资源并将信号量值-1

//    若信号量值为0,进程挂起等待

int sem_p(int sem_id)

{

struct sembuf sbuf;

sbuf.sem_num = 0; /*序号*/

sbuf.sem_op = -1; /*P操作*/

sbuf.sem_flg = SEM_UNDO;

if(semop(sem_id, &sbuf, 1) == -1)

{

perror("P operation Error");

return -1;

}

return 0;

}

// V操作:

//    释放资源并将信号量值+1

//    如果有进程正在挂起等待,则唤醒它们

int sem_v(int sem_id)

{

struct sembuf sbuf;

sbuf.sem_num = 0; /*序号*/

sbuf.sem_op = 1;  /*V操作*/

sbuf.sem_flg = SEM_UNDO;

if(semop(sem_id, &sbuf, 1) == -1)

{

perror("V operation Error");

return -1;

}

return 0;

}

// 删除信号量集

int del_sem(int sem_id)

{

union semun tmp;

if(semctl(sem_id, 0, IPC_RMID, tmp) == -1)

{

perror("Delete Semaphore Error");

return -1;

}

return 0;

}

int main()

{

int sem_id;  // 信号量集ID

key_t key;

pid_t pid;

// 获取key值

if((key = ftok(".", 'z')) < 0)

{

perror("ftok error");

exit(1);

}

// 创建信号量集,其中只有一个信号量

if((sem_id = semget(key, 1, IPC_CREAT|0666)) == -1)

{

perror("semget error");

exit(1);

}

// 初始化:初值设为0资源被占用

init_sem(sem_id, 0);

if((pid = fork()) == -1)

perror("Fork Error");

else if(pid == 0) /*子进程*/

{

sleep(2);

printf("Process child: pid=%d\n", getpid());

sem_v(sem_id);  /*释放资源*/

}

else  /*父进程*/

{

sem_p(sem_id);  /*等待资源*/

printf("Process father: pid=%d\n", getpid());

sem_v(sem_id);  /*释放资源*/

del_sem(sem_id); /*删除信号量集*/

}

return 0;

}

上面的例子如果不加信号量,则父进程会先执行完毕。这里加了信号量让父进程等待子进程执行完以后再执行。

五、共享内存

共享内存(Shared Memory),指两个或多个进程共享一个给定的存储区。

1、特点

共享内存是最快的一种 IPC,因为进程是直接对内存进行存取。

因为多个进程可以同时操作,所以需要进行同步。

信号量+共享内存通常结合在一起使用,信号量用来同步对共享内存的访问。

2、原型

1 #include <sys/shm.h>

2 // 创建或获取一个共享内存:成功返回共享内存ID,失败返回-1

3 int shmget(key_t key, size_t size, int flag);

4 // 连接共享内存到当前进程的地址空间:成功返回指向共享内存的指针,失败返回-1

5 void *shmat(int shm_id, const void *addr, int flag);

6 // 断开与共享内存的连接:成功返回0,失败返回-1

7 int shmdt(void *addr);

8 // 控制共享内存的相关信息:成功返回0,失败返回-1

9 int shmctl(int shm_id, int cmd, struct shmid_ds *buf);

当用shmget函数创建一段共享内存时,必须指定其 size;而如果引用一个已存在的共享内存,则将 size 指定为0 。

当一段共享内存被创建以后,它并不能被任何进程访问。必须使用shmat函数连接该共享内存到当前进程的地址空间,连接成功后把共享内存区对象映射到调用进程的地址空间,随后可像本地空间一样访问。

shmdt函数是用来断开shmat建立的连接的。注意,这并不是从系统中删除该共享内存,只是当前进程不能再访问该共享内存而已。

shmctl函数可以对共享内存执行多种操作,根据参数 cmd 执行相应的操作。常用的是IPC_RMID(从系统中删除该共享内存)。

3、例子

下面这个例子,使用了【共享内存+信号量+消息队列】的组合来实现服务器进程与客户进程间的通信。

共享内存用来传递数据;

信号量用来同步;

消息队列用来 在客户端修改了共享内存后 通知服务器读取。

server.c

1 #include<stdio.h>

2 #include<stdlib.h>

3 #include<sys/shm.h>  // shared memory

4 #include<sys/sem.h>  // semaphore

5 #include<sys/msg.h>  // message queue

6 #include<string.h>  // memcpy

7

8 // 消息队列结构

9 struct msg_form {

10    long mtype;

11    char mtext;

12 };

13

14 // 联合体,用于semctl初始化

15 union semun

16 {

17    int              val; /*for SETVAL*/

18    struct semid_ds *buf;

19    unsigned short  *array;

20 };

21

22 // 初始化信号量

23 int init_sem(int sem_id, int value)

24 {

25    union semun tmp;

26    tmp.val = value;

27    if(semctl(sem_id, 0, SETVAL, tmp) == -1)

28    {

29        perror("Init Semaphore Error");

30        return -1;

31    }

32    return 0;

33 }

34

35 // P操作:

36 //  若信号量值为1,获取资源并将信号量值-1

37 //  若信号量值为0,进程挂起等待

38 int sem_p(int sem_id)

39 {

40    struct sembuf sbuf;

41    sbuf.sem_num = 0; /*序号*/

42    sbuf.sem_op = -1; /*P操作*/

43    sbuf.sem_flg = SEM_UNDO;

44

45    if(semop(sem_id, &sbuf, 1) == -1)

46    {

47        perror("P operation Error");

48        return -1;

49    }

50    return 0;

51 }

52

53 // V操作:

54 //  释放资源并将信号量值+1

55 //  如果有进程正在挂起等待,则唤醒它们

56 int sem_v(int sem_id)

57 {

58    struct sembuf sbuf;

59    sbuf.sem_num = 0; /*序号*/

60    sbuf.sem_op = 1;  /*V操作*/

61    sbuf.sem_flg = SEM_UNDO;

62

63    if(semop(sem_id, &sbuf, 1) == -1)

64    {

65        perror("V operation Error");

66        return -1;

67    }

68    return 0;

69 }

70

71 // 删除信号量集

72 int del_sem(int sem_id)

73 {

74    union semun tmp;

75    if(semctl(sem_id, 0, IPC_RMID, tmp) == -1)

76    {

77        perror("Delete Semaphore Error");

78        return -1;

79    }

80    return 0;

81 }

82

83 // 创建一个信号量集

84 int creat_sem(key_t key)

85 {

86    int sem_id;

87    if((sem_id = semget(key, 1, IPC_CREAT|0666)) == -1)

88    {

89        perror("semget error");

90        exit(-1);

91    }

92    init_sem(sem_id, 1);  /*初值设为1资源未占用*/

93    return sem_id;

94 }

95

96

97 int main()

98 {

99    key_t key;

100    int shmid, semid, msqid;

101    char *shm;

102    char data[] = "this is server";

103    struct shmid_ds buf1;  /*用于删除共享内存*/

104    struct msqid_ds buf2;  /*用于删除消息队列*/

105    struct msg_form msg;  /*消息队列用于通知对方更新了共享内存*/

106

107    // 获取key值

108    if((key = ftok(".", 'z')) < 0)

109    {

110        perror("ftok error");

111        exit(1);

112    }

113

114    // 创建共享内存

115    if((shmid = shmget(key, 1024, IPC_CREAT|0666)) == -1)

116    {

117        perror("Create Shared Memory Error");

118        exit(1);

119    }

120

121    // 连接共享内存

122    shm = (char*)shmat(shmid, 0, 0);

123    if((int)shm == -1)

124    {

125        perror("Attach Shared Memory Error");

126        exit(1);

127    }

128

129

130    // 创建消息队列

131    if ((msqid = msgget(key, IPC_CREAT|0777)) == -1)

132    {

133        perror("msgget error");

134        exit(1);

135    }

136

137    // 创建信号量

138    semid = creat_sem(key);

139

140    // 读数据

141    while(1)

142    {

143        msgrcv(msqid, &msg, 1, 888, 0); /*读取类型为888的消息*/

144        if(msg.mtext == 'q')  /*quit - 跳出循环*/

145            break;

146        if(msg.mtext == 'r')  /*read - 读共享内存*/

147        {

148            sem_p(semid);

149            printf("%s\n",shm);

150            sem_v(semid);

151        }

152    }

153

154    // 断开连接

155    shmdt(shm);

156

157    /*删除共享内存、消息队列、信号量*/

158    shmctl(shmid, IPC_RMID, &buf1);

159    msgctl(msqid, IPC_RMID, &buf2);

160    del_sem(semid);

161    return 0;

162 }

client.c

1 #include<stdio.h>

2 #include<stdlib.h>

3 #include<sys/shm.h>  // shared memory

4 #include<sys/sem.h>  // semaphore

5 #include<sys/msg.h>  // message queue

6 #include<string.h>  // memcpy

7

8 // 消息队列结构

9 struct msg_form {

10    long mtype;

11    char mtext;

12 };

13

14 // 联合体,用于semctl初始化

15 union semun

16 {

17    int              val; /*for SETVAL*/

18    struct semid_ds *buf;

19    unsigned short  *array;

20 };

21

22 // P操作:

23 //  若信号量值为1,获取资源并将信号量值-1

24 //  若信号量值为0,进程挂起等待

25 int sem_p(int sem_id)

26 {

27    struct sembuf sbuf;

28    sbuf.sem_num = 0; /*序号*/

29    sbuf.sem_op = -1; /*P操作*/

30    sbuf.sem_flg = SEM_UNDO;

31

32    if(semop(sem_id, &sbuf, 1) == -1)

33    {

34        perror("P operation Error");

35        return -1;

36    }

37    return 0;

38 }

39

40 // V操作:

41 //  释放资源并将信号量值+1

42 //  如果有进程正在挂起等待,则唤醒它们

43 int sem_v(int sem_id)

44 {

45    struct sembuf sbuf;

46    sbuf.sem_num = 0; /*序号*/

47    sbuf.sem_op = 1;  /*V操作*/

48    sbuf.sem_flg = SEM_UNDO;

49

50    if(semop(sem_id, &sbuf, 1) == -1)

51    {

52        perror("V operation Error");

53        return -1;

54    }

55    return 0;

56 }

57

58

59 int main()

60 {

61    key_t key;

62    int shmid, semid, msqid;

63    char *shm;

64    struct msg_form msg;

65    int flag = 1; /*while循环条件*/

66

67    // 获取key值

68    if((key = ftok(".", 'z')) < 0)

69    {

70        perror("ftok error");

71        exit(1);

72    }

73

74    // 获取共享内存

75    if((shmid = shmget(key, 1024, 0)) == -1)

76    {

77        perror("shmget error");

78        exit(1);

79    }

80

81    // 连接共享内存

82    shm = (char*)shmat(shmid, 0, 0);

83    if((int)shm == -1)

84    {

85        perror("Attach Shared Memory Error");

86        exit(1);

87    }

88

89    // 创建消息队列

90    if ((msqid = msgget(key, 0)) == -1)

91    {

92        perror("msgget error");

93        exit(1);

94    }

95

96    // 获取信号量

97    if((semid = semget(key, 0, 0)) == -1)

98    {

99        perror("semget error");

100        exit(1);

101    }

102

103    // 写数据

104    printf("***************************************\n");

105    printf("*                IPC                *\n");

106    printf("*    Input r to send data to server.  *\n");

107    printf("*    Input q to quit.                *\n");

108    printf("***************************************\n");

109

110    while(flag)

111    {

112        char c;

113        printf("Please input command: ");

114        scanf("%c", &c);

115        switch(c)

116        {

117            case 'r':

118                printf("Data to send: ");

119                sem_p(semid);  /*访问资源*/

120                scanf("%s", shm);

121                sem_v(semid);  /*释放资源*/

122                /*清空标准输入缓冲区*/

123                while((c=getchar())!='\n' && c!=EOF);

124                msg.mtype = 888;

125                msg.mtext = 'r';  /*发送消息通知服务器读数据*/

126                msgsnd(msqid, &msg, sizeof(msg.mtext), 0);

127                break;

128            case 'q':

129                msg.mtype = 888;

130                msg.mtext = 'q';

131                msgsnd(msqid, &msg, sizeof(msg.mtext), 0);

132                flag = 0;

133                break;

134            default:

135                printf("Wrong input!\n");

136                /*清空标准输入缓冲区*/

137                while((c=getchar())!='\n' && c!=EOF);

138        }

139    }

140

141    // 断开连接

142    shmdt(shm);

143

144    return 0;

145 }

注意:当scanf()输入字符或字符串时,缓冲区中遗留下了\n,所以每次输入操作后都需要清空标准输入的缓冲区。但是由于 gcc 编译器不支持fflush(stdin)(它只是标准C的扩展),所以我们使用了替代方案:

1 while((c=getchar())!='\n' && c!=EOF);

五种通讯方式总结

1.管道:速度慢,容量有限,只有父子进程能通讯

2.FIFO:任何进程间都能通讯,但速度慢

3.消息队列:容量受到系统限制,且要注意第一次读的时候,要考虑上一次没有读完数据的问题

4.信号量:不能传递复杂消息,只能用来同步

5.共享内存区:能够很容易控制容量,速度快,但要保持同步,比如一个进程在写的时候,另一个进程要注意读写的问题,相当于线程中的线程安全,当然,共享内存区同样可以用作线程间通讯,不过没这个必要,线程间本来就已经共享了同一进程内的一块内存

原文链接https://blog.csdn.net/wh_sjc/article/details/70283843

作者:寒夜飘星
链接:https://www.jianshu.com/p/e1c1e7a425c0
来源:简书
著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。

swoole前置基础知识 进程间通信的更多相关文章

  1. swoole前置基础知识1——1.1多进程/多线程的概念

    一.为何需要多进程(或者多线程),为何需要并发? 这个问题或许本身都不是个问题.但是对于没有接触过多进程编程的朋友来说,他们确实无法感受到并发的魅力以及必要性. 我想,只要你不是整天都写那种int m ...

  2. IM开发基础知识补课:正确理解前置HTTP SSO单点登陆接口的原理

    1.前言 一个安全的信息系统,合法身份检查是必须环节.尤其IM这种以“人”为中心的社交体系,身份认证更是必不可少. 一些PC时代小型IM系统中,身份认证可能直接做到长连接中(也就是整个IM系统都是以长 ...

  3. 关于图计算&图学习的基础知识概览:前置知识点学习(Paddle Graph Learning (PGL))

    关于图计算&图学习的基础知识概览:前置知识点学习(Paddle Graph Learning (PGL)) 欢迎fork本项目原始链接:关于图计算&图学习的基础知识概览:前置知识点学习 ...

  4. javascript中关于日期和时间的基础知识

    × 目录 [1]标准时间 [2]字符串 [3]闰年[4]月日[5]星期[6]时分秒 前面的话 在介绍Date对象之前,首先要先了解关于日期和时间的一些知识.比如,闰年.UTC等等.深入了解这些,有助于 ...

  5. 【分享】4412开发板-嵌入式Linux开发须要掌握的基础知识和技能

    本文转自迅为电子论坛:http://www.topeetboard.com 1.Linux 基础 安装Linux操作系统 Linux文件系统 Linux经常使用命令 Linux启动过程具体解释 熟悉L ...

  6. OSI七层模型基础知识及各层常见应用

       OSI Open Source Initiative(简称OSI,有译作开放源代码促进会.开放原始码组织)是一个旨在推动开源软件发展的非盈利组织.OSI参考模型(OSI/RM)的全称是开放系统互 ...

  7. linux内存基础知识和相关调优方案

    内存是计算机中重要的部件之中的一个.它是与CPU进行沟通的桥梁. 计算机中全部程序的执行都是在内存中进行的.因此内存的性能对计算机的影响很大.内存作用是用于临时存放CPU中的运算数据,以及与硬盘等外部 ...

  8. 【RAC】RAC相关基础知识

    [RAC]RAC相关基础知识 1.CRS简介    从Oracle 10G开始,oracle引进一套完整的集群管理解决方案—-Cluster-Ready Services,它包括集群连通性.消息和锁. ...

  9. 【流量】netflow 基础知识

    摘要 记录下关于netflow的基础知识以及应用,现状 是什么 一种数据交换方式,NetFlow流量统计数据包括数据流时戳 源IP地址和目的IP地址 源端口号和目的端口号 输入接口号和输出接口号 下一 ...

随机推荐

  1. 流媒体服务器搭建 red5

    简介 1. 流媒体指以流方式在网络中传送音频.视频和多媒体文件的媒体形式.相对于下载后观看的网络播放形式而言,流媒体的典型特征是把连续的音频和视频信息压缩后放到网络服务器上,用户边下载边观看,而不必等 ...

  2. php类知识----特别用法

    spl_autoload_register注册 <?php #spl_autoload_register-----这个例子是用来打印实例化类的类名 function thereisagameof ...

  3. linux中强大的编辑工具vim

    先来个图镇贴 vim是一个模式编辑器.由三种主要模式比较常用: 1.命令(Normal)模式:默认模式,移动光标,剪切/粘贴文本 2.插入(Insert)或编辑模式:修改文本 3.扩展命令(exten ...

  4. Centos7搭建CDH6.0.1(单机版)

    一.前言. 学习大数据组件,最好的方式是直接参照官网.不过官网的教程也让我吃了一坑,在此记录一下.因在个人笔记本资源有限,在此安装为单机版安装 二.搭建. 1.1配置主机名 hostnamectl s ...

  5. oracle rowtype

    v_customer customerinfo%rowtype; select * into v_customer from customerinfo where guid = v_loan.cust ...

  6. Flex 布局是什么?

    Flex 是 Flexible Box 的缩写,意为"弹性布局",用来为盒状模型提供最大的灵活性. 任何一个容器都可以指定为 Flex 布局.大理石平台价格 .box{ displ ...

  7. 【原创】时隔十年,再度审视Performance Testing,性能测试,Load Runner,和企业级性能测试解决方案

    软件测试入行是2006年,最先学习的测试工具囊括了QTP,Test Director,Load Runner,Rational Robot,Rational Performance: 那时的操作系统是 ...

  8. 9.一次简单的Web作业

    Web作业 <!DOCTYPE html> <!-- 作业描述:由于引用了JQuery库,所以请在联网的时候打开该页面. 本次作业是在上次作业的基础上的进一步完善,上次作业页面预留的 ...

  9. 【知识库】-数据库_MySQL之高级数据查询:去重复、组合查询、连接查询、虚拟表

    简书作者:seay 文章出处: 关系数据库SQL之高级数据查询:去重复.组合查询.连接查询.虚拟表 回顾:[知识库]-数据库_MySQL之基本数据查询:子查询.分组查询.模糊查询 Learn [已经过 ...

  10. Keras学习笔记三:一个图像去噪训练并离线测试的例子,基于mnist

    训练模型需要的数据文件有: MNIST_data文件夹下的mnist_train.mnist_test.noisy_train.noisy_test.train文件夹下60000个图片,test下10 ...