近来看batch normalization的代码时,遇到tf.train.ExponentialMovingAverage()函数,特此记录。

tf.train.ExponentialMovingAverage()函数实现滑动平均模型和计算变量的移动平均值。

TensorFlow官网上对于这个方法的介绍:

Some training algorithms, such as GradientDescent and Momentum often benefit from maintaining a moving average of variables during optimization. Using the moving averages for evaluations often improve results significantly.

一些训练算法,如梯度下降(GradientDescent)和动量(Momentum),经常受益于在优化过程中保持变量的移动平均。使用移动平均线进行评估通常会显著改善结果。

# 类,用于计算滑动平均
tf.train.ExponentialMovingAverage __init__(
decay,
num_updates=None,
zero_debias=False,
name='ExponentialMovingAverage')

decay是衰减率。在创建ExponentialMovingAverage对象时,需要指定衰减率(decay),用于控制模型的更新速度。影子变量的初始值与训练变量的初始值相同。当运行变量更新时,每个影子变量都会更新为:

  shadowvariable=decay∗shadowvariable+(1−decay)∗variable

num_updates是ExponentialMovingAverage提供用来动态设置decay的参数,当初始化时,函数提供了num_updates参数,即不为none时,每次的衰减率是:

apply()方法添加了训练变量的影子副本,并保持了其影子副本中训练变量的移动平均值操作。在每次训练之后调用此操作,更新移动平均值。average()和average_name()方法可以获取影子变量及其名称。

decay设置为接近1的值比较合理,通常为:0.999,0.9999等,decay越大模型越稳定,因为decay越大,参数更新的速度就越慢,趋于稳定。

官网中的示例:

# 创建variables.
var0 = tf.Variable(...)
var1 = tf.Variable(...)
# ... 使用variables去创建一个训练模型...
...
# 创建一个使用the optimizer对的op.
# 这是我们通常会使用作为一个training op.
opt_op = opt.minimize(my_loss, [var0, var1]) # 创建一个ExponentialMovingAverage object
ema = tf.train.ExponentialMovingAverage(decay=0.9999) # 创建the shadow variables,然后把ops加到maintain moving averages of var0 and var1.
maintain_averages_op = ema.apply([var0, var1]) # 创建一个op,在每次训练之后用来更新the moving averages.
# 用来代替the usual training op.
with tf.control_dependencies([opt_op]):
training_op = tf.group(maintain_averages_op)
# run这个op获取当前时刻 ema_value
get_var0_average_op = ema.average(var0)

例子:

import tensorflow as tf
import numpy as np v1 = tf.Variable(0, dtype=tf.float32)
step = tf.Variable(tf.constant(0)) ema = tf.train.ExponentialMovingAverage(0.99, step)
maintain_average = ema.apply([v1]) with tf.Session() as sess:
init = tf.initialize_all_variables()
sess.run(init)
print(sess.run([v1, ema.average(v1)])) #初始的值都为0 sess.run(tf.assign(v1, 5)) #把v1变为5
sess.run(maintain_average)
print(sess.run([v1, ema.average(v1)]))
# decay=min(0.99, 1/10)=0.1, v1=0.1*0+0.9*5=4.5 sess.run(tf.assign(step, 10000)) # steps=10000
sess.run(tf.assign(v1, 10)) # v1=10
sess.run(maintain_average)
print(sess.run([v1, ema.average(v1)]))
# decay=min(0.99,(1+10000)/(10+10000))=0.99, v1=0.99*4.5+0.01*10=4.555 sess.run(maintain_average)
print(sess.run([v1, ema.average(v1)]))
# decay=min(0.99,(1+10000)/(10+10000))=0.99, v1=0.99*4.555+0.01*10=4.60945
> [0.0, 0.0]
> [5.0, 4.5]
> [10.0, 4.555]
> [10.0, 4.60945]

每次更新完之后,影子变量(shadow_variable)的值就会更新,varible的值就是我们设定的值。如果在下一次运行这个函数的时候我们不再指定新的值,那varible的值就不变,影子变量更新。如果指定varible的值,那variable就改变为对应的指定值,相应的影子变量也改变。
原文链接:https://blog.csdn.net/tefuirnever/article/details/88902132

deep_learning_Function_tf.train.ExponentialMovingAverage()滑动平均的更多相关文章

  1. tensorflow 下的滑动平均模型 —— tf.train.ExponentialMovingAverage

    在采用随机梯度下降算法训练神经网络时,使用 tf.train.ExponentialMovingAverage 滑动平均操作的意义在于提高模型在测试数据上的健壮性(robustness). tenso ...

  2. Tensorflow滑动平均模型tf.train.ExponentialMovingAverage解析

    觉得有用的话,欢迎一起讨论相互学习~Follow Me 移动平均法相关知识 移动平均法又称滑动平均法.滑动平均模型法(Moving average,MA) 什么是移动平均法 移动平均法是用一组最近的实 ...

  3. 理解滑动平均(exponential moving average)

    1. 用滑动平均估计局部均值 滑动平均(exponential moving average),或者叫做指数加权平均(exponentially weighted moving average),可以 ...

  4. 『TensorFlow』滑动平均

    滑动平均会为目标变量维护一个影子变量,影子变量不影响原变量的更新维护,但是在测试或者实际预测过程中(非训练时),使用影子变量代替原变量. 1.滑动平均求解对象初始化 ema = tf.train.Ex ...

  5. tensorflow随机梯度下降算法使用滑动平均模型

    在采用随机梯度下降算法训练神经网络时,使用滑动平均模型可以提高最终模型在测试集数据上的表现.在Tensflow中提供了tf.train.ExponentialMovingAverage来实现滑动平均模 ...

  6. tensorflow入门笔记(二) 滑动平均模型

    tensorflow提供的tf.train.ExponentialMovingAverage 类利用指数衰减维持变量的滑动平均. 当训练模型的时候,保持训练参数的滑动平均是非常有益的.评估时使用取平均 ...

  7. tensorflow笔记之滑动平均模型

    tensorflow使用tf.train.ExponentialMovingAverage实现滑动平均模型,在使用随机梯度下降方法训练神经网络时候,使用这个模型可以增强模型的鲁棒性(robust),可 ...

  8. TensorFlow+实战Google深度学习框架学习笔记(11)-----Mnist识别【采用滑动平均,双层神经网络】

    模型:双层神经网络 [一层隐藏层.一层输出层]隐藏层输出用relu函数,输出层输出用softmax函数 过程: 设置参数 滑动平均的辅助函数 训练函数 x,y的占位,w1,b1,w2,b2的初始化 前 ...

  9. (转)理解滑动平均(exponential moving average)

    转自:理解滑动平均(exponential moving average) 1. 用滑动平均估计局部均值 滑动平均(exponential moving average),或者叫做指数加权平均(exp ...

随机推荐

  1. MVC - 单点登录中间件 (转)

    http://www.cnblogs.com/wangrudong003/p/6435013.html 本章将要和大家分享的是一个单点登录中间件,中间件听起来高深其实这里只是吧单点登录要用到的逻辑和处 ...

  2. JSP 简单标签extends SimpleTagSupport

    1.控制JSP页面某一部分内容是否执行 public void doTag() this.getJspBody().invoke(null);执行 空白,不执行 2.控制JSP页面内容重复执行 pac ...

  3. 关于SVN的405错误Server sent unexpected return value (405 Method Not Allowed)的解决办法

    一大早上捣鼓项目提交的时候出现这个错误: svn:server sent unexpected return value 405 method not allowed 百度了很多解决办法都没有解决,看 ...

  4. iOS类型的转换

    1.NSData和NSString的转换: - (void)viewDidLoad { [super viewDidLoad]; // 字符串 NSString *str = "; NSLo ...

  5. 【转】zookeeper之 zkServer.sh命令、zkCli.sh命令、四字命令

    [FROM]https://www.cnblogs.com/andy6/p/7674028.html 一.zkServer.sh 1.查看 zkServer.sh 帮助信息 [root@bigdata ...

  6. C++实现生产者和消费者

    传统的生产者消费者模型 生产者-消费者模式是一个十分经典的多线程并发协作的模式,弄懂生产者-消费者问题能够让我们对并发编程的理解加深.所谓生产者-消费者问题,实际上主要是包含了两类线程,一种是生产者线 ...

  7. Linux编辑网络连接

    Linux编辑网络连接   实验目标: 通过本实验掌握新建网络连接.修改hosts文件.修改主机名的方法. 实验步骤: 1.新建一个名为review的网络连接,并配置ip地址,启用新连接 2.修改ho ...

  8. cisco路由的ip静态路由添加(二)

    路由器Corp 配置Corp(config)#ip route 192.168.20.0 255.255.255.0 10.1.3.2 150 Corp(config)#ip route 192.16 ...

  9. 1.2.2 OSI参考模型 上

    一.HCNA网络技术学习指南 为了实现网络的互通及各种各样的网络应用,网络设备需要运行各种各样的协议已实现各种各样具体的功能.面对各种各样且数量繁多的功能,我们可以从网络架构的角度,引入功能分层的模型 ...

  10. zk安装管理

    参考: https://www.cnblogs.com/yinzhengjie/p/9209319.html 10.52.110.48 bi-kafka-310.52.48.92 bi-kafka-1 ...