题目背景

由于你的帮助,火星只遭受了最小的损失。但gw懒得重建家园了,就造了一艘飞船飞向遥远的earth星。不过飞船飞到一半,gw发现了一个很严重的问题:肚子饿了~

gw还是会做饭的,于是拿出了储藏的食物准备填饱肚子。gw希望能在T时间内做出最美味的食物,但是这些食物美味程度的计算方式比较奇葩,于是绝望的gw只好求助于你了。

题目描述

一共有n件食材,每件食材有三个属性,ai,bi和ci,如果在t时刻完成第i样食材则得到ai-t*bi的美味指数,用第i件食材做饭要花去ci的时间。

众所周知,gw的厨艺不怎么样,所以他需要你设计烹调方案使得美味指数最大

输入输出格式

输入格式:

第一行是两个正整数T和n,表示到达地球所需时间和食材个数。

下面一行n个整数,ai

下面一行n个整数,bi

下面一行n个整数,ci

输出格式:

输出最大美味指数

输入输出样例

输入样例#1:

74 1
502
2
47

输出样例#1:

408

说明

【数据范围】

对于40%的数据1<=n<=10

对于100%的数据1<=n<=50

所有数字均小于100,000

【题目来源】

tinylic改编

解析:

目前为止第一道当我觉得“卧槽!还有这种操作?!”的一道题目。

upd:2019-7-8

这道题其实可以联系到一些贪心的思想,比如P1080 【NOIP 2012】 国王游戏这题。


乍一看,就是一个01背包。

说实话一开始我也对这个与背包容量(也就是时间)有关的费用大小有所顾虑,我还以为就是个泛化背包,没啥别的。毫无疑问写出来交上去爆0,也是在预料之中的。如果隐隐约约感觉到当前时刻对价值的影响,那么就说明方向对了。

实际上,我们会发现对于任意两个相邻的食材\(x\)和\(y\),显然先做\(x\)和先做\(y\)是会得到不同的价值的。如果把\(x\)比\(y\)先做,那\(y\)的价值就有损失,反之\(x\)的价值有损失。但是我们并不知道是把\(x\)放在前面最优还是把\(y\)放在前面最优。

我们可以稍微比较一下:

把\(x\)放在前面时:\(a[x]- (t+c[x])*b[x]+a[y]-(t+c[y]+c[x])*b[y]\)

把\(y\)放在前面时:\(a[y]-(t+c[y] )*b[y]+a[x]-(t+c[x]+c[y])*b[x]\)

如果要整体最优,那我们势必要让任何时刻有一式\(>\)二式。

化简后得到\(c[x]*b[y]<c[y]*b[x]\)

我们只要在01背包之前对输入数据排个序就行了。

妙哉。

参考代码:

#include<iostream>
#include<cstdio>
#include<cstring>
#include<cmath>
#include<algorithm>
#include<string>
#include<cstdlib>
#include<queue>
#include<vector>
#define INF 0x3f3f3f3f
#define PI acos(-1.0)
#define N 100010
#define MOD 2520
#define E 1e-12
#define ll long long
using namespace std;
ll dp[N];
int t,n,b[N];
struct rec{
ll a,b,c;
}v[N];
//a[x]-(t+c[x])*b[x]+a[y]-(t+c[y]+c[x])*b[y] 若x在前
//a[y]-(t+c[y])*b[y]+a[x]-(t+c[x]+c[y])*b[x] 若y在前
bool operator<(rec a,rec b)
{
return a.c*b.b<b.c*a.b;
}
int main()
{
scanf("%d%d",&t,&n);
for(int i=1;i<=n;i++) scanf("%lld",&v[i].a);
for(int i=1;i<=n;i++) scanf("%lld",&v[i].b);
for(int i=1;i<=n;i++) scanf("%lld",&v[i].c);
ll ans=-INF;
sort(v+1,v+n+1);
for(int i=1;i<=n;i++)
for(int j=t;j>=v[i].c;j--){
dp[j]=max(dp[j],dp[j-v[i].c]+v[i].a-j*v[i].b);
ans=max(ans,dp[j]);
}
cout<<ans<<endl;
return 0;
}

P1417 烹调方案[背包]的更多相关文章

  1. P1417 烹调方案 背包DP

    题目背景 由于你的帮助,火星只遭受了最小的损失.但gw懒得重建家园了,就造了一艘飞船飞向遥远的earth星.不过飞船飞到一半,gw发现了一个很严重的问题:肚子饿了~ gw还是会做饭的,于是拿出了储藏的 ...

  2. 【洛谷】【动态规划/背包】P1417 烹调方案

    由于你的帮助,火星只遭受了最小的损失.但gw懒得重建家园了,就造了一艘飞船飞向遥远的earth星.不过飞船飞到一半,gw发现了一个很严重的问题:肚子饿了~ gw还是会做饭的,于是拿出了储藏的食物准备填 ...

  3. P1417 烹调方案

    P1417 烹调方案 题目提供者tinylic 标签 动态规划 难度 普及+/提高 题目背景 由于你的帮助,火星只遭受了最小的损失.但gw懒得重建家园了,就造了一艘飞船飞向遥远的earth星.不过飞船 ...

  4. P1417 烹调方案 (0/1背包+贪心)

    题目背景 由于你的帮助,火星只遭受了最小的损失.但gw懒得重建家园了,就造了一艘飞船飞向遥远的earth星.不过飞船飞到一半,gw发现了一个很严重的问题:肚子饿了~ gw还是会做饭的,于是拿出了储藏的 ...

  5. P1417 烹调方案(思维+01背包)

    (点击此处查看原题) 题意 有n种食材,每种食材有三个属性,ai,bi和ci,如果在t时刻完成第i样食材则得到ai-t*bi的美味指数,用第i件食材做饭要花去ci的时间.问在T时间内,什么样的烹调方案 ...

  6. 洛谷P1417 烹调方案

    题目背景 由于你的帮助,火星只遭受了最小的损失.但gw懒得重建家园了,就造了一艘飞船飞向遥远的earth星.不过飞船飞到一半,gw发现了一个很严重的问题:肚子饿了~ gw还是会做饭的,于是拿出了储藏的 ...

  7. 洛谷 P1417 烹调方案

    题目背景 由于你的帮助,火星只遭受了最小的损失.但gw懒得重建家园了,就造了一艘飞船飞向遥远的earth星.不过飞船飞到一半,gw发现了一个很严重的问题:肚子饿了~ gw还是会做饭的,于是拿出了储藏的 ...

  8. [洛谷P1417 烹调方案]贪心+dp

    http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemCode=3211Dream City Time Limit: 1 Second     ...

  9. luogu P1417 烹调方案

    题目背景 由于你的帮助,火星只遭受了最小的损失.但gw懒得重建家园了,就造了一艘飞船飞向遥远的earth星.不过飞船飞到一半,gw发现了一个很严重的问题:肚子饿了~ gw还是会做饭的,于是拿出了储藏的 ...

随机推荐

  1. 为做个程序员英语字典,我处理了StackOverflow和HackerNews10年5千万条数据

    有点标题党,不过都说都真实的.英语技能对开发员人员至关重要.所有人都不喜欢背单词,但更惨的是背住的单词发现没怎么用,又慢慢地忘记了.本来计划给自己做个开发人员常用单词表,感觉可能对其它人也有用,所以就 ...

  2. 【神经网络与深度学习】【计算机视觉】RCNN- 将CNN引入目标检测的开山之作

    转自:https://zhuanlan.zhihu.com/p/23006190?refer=xiaoleimlnote 前面一直在写传统机器学习.从本篇开始写一写 深度学习的内容. 可能需要一定的神 ...

  3. 记录一下vue slot

    使用步骤: 1.在组件(panda)当中建立一个slot,定义好name.(<slot name='myname'></slot>)    2.引用组件的时候如果需要补充内容, ...

  4. axios 使用入门

    [Vue 牛刀小试]:第十五章 - 传统开发模式下的 axios 使用入门   一.前言# 在没有接触 React.Angular.Vue 这类 MVVM 的前端框架之前,无法抛弃 Jquery 的重 ...

  5. dotnet core use Redis to publish and subscribe

    安装Redis 同样我这边再次使用Docker, 方便快捷: # 拉取镜像 docker pull redis # 运行镜像 docker run -d -p 6379:6379 --name red ...

  6. [转帖]crontab每小时运行一次

    crontab每小时运行一次     先给出crontab的语法格式 对于网上很多给出的每小时定时任务写法,可以说绝大多数都是错误的!比如对于下面的这种写法: 00 * * * * #每隔一小时执行一 ...

  7. [转帖]使用Nginx转发TCP/UDP数据

    使用Nginx转发TCP/UDP数据 https://www.cnblogs.com/guigujun/p/8075620.html 编译安装Nginx 从1.9.0开始,nginx就支持对TCP的转 ...

  8. Struts笔记5

    文件下载 1.写action类 package com.gyf.web.action; import java.io.File; import java.io.FileInputStream; imp ...

  9. c语言求回文数的三种算法的描述

    c语言求回文数的三种算法的描述 题目描述 注意:(这些回文数都没有前导0) 1位的回文数有0,1,2,3,4,5,6,7,8,9 共10个: 2位的回文数有11,22,33,44,55,66,77,8 ...

  10. 正整数序列 Help the needed for Dexter ,UVa 11384

    题目描述 Description 给定正整数n,你的任务是用最少的操作次数把序列1, 2, …, n中的所有数都变成0.每次操作可从序列中选择一个或多个整数,同时减去一个相同的正整数.比如,1,2,3 ...