一、基础知识
(1)矩阵乘法

https://blog.csdn.net/weixin_43272781/article/details/82899737

简单的说矩阵就是二维数组,数存在里面,矩阵乘法的规则:A*B=C

其中c[i][j]为A的第i行与B的第j列对应乘积的和,即:

代码:

const int N=;
int c[N][N];
void multi(int a[][N],int b[][N],int n)//n是矩阵大小,n<N
{
memset(c,,sizeof c);
for(int i=;i<=n;i++)
for(int j=;j<=n;j++)
for(int k=;k<=n;k++)
c[i][j]+=a[i][k]*b[k][j];
}

另一种写法:

int c[N][N];
void multi(int a[][N],int b[][N],int n)
{
memset(c,,sizeof c);
for(int i=;i<=n;i++)
for(int k=;k<=n;k++)
for(int j=;j<=n;j++)
c[i][j]+=a[i][k]*b[k][j];
}

这种可以在第二重for判断if(a[i][k]==0)continue;对于矩阵有较多0的有一定效果。不过一般第一种写法就够了,这种知道就行。
显然矩阵乘法的复杂度是O(n^3);(O(n^2.7)的方法不会写,无视这里)。

这里我直接写的是n*n的矩阵(即方阵),显然两个相乘是要一行和一列对应乘,那么矩阵乘法是需要A的行数与B的列数相等的(这是A*B的前提条件,可见矩阵的乘法是不满足交换律的)。然而这些一般都是没什么用的,矩阵快速幂只会用到方阵(除非题目是裸的矩阵乘法)。矩阵快速幂都是方阵也就避免的相乘的前提条件,可以放心用。

二、矩阵快速幂
如果不知道快速幂的请参考:https://www.cnblogs.com/DWVictor/p/10278589.html

const int N=;
int tmp[N][N];
void multi(int a[][N],int b[][N],int n)
{
memset(tmp,,sizeof tmp);
for(int i=;i<n;i++)
for(int j=;j<n;j++)
for(int k=;k<n;k++)
tmp[i][j]+=a[i][k]*b[k][j];
for(int i=;i<n;i++)
for(int j=;j<n;j++)
a[i][j]=tmp[i][j];
}
int res[N][N];
void Pow(int a[][N],int n)
{
memset(res,,sizeof res);//n是幂,N是矩阵大小
for(int i=;i<N;i++) res[i][i]=;
while(n)
{
if(n&)
multi(res,a,N);//res=res*a;复制直接在multi里面实现了;
multi(a,a,N);//a=a*a
n>>=;
}
}

值得注意的是矩阵快速幂只适用于n*n的矩阵方阵。

三、例题
http://poj.org/problem?id=3070

http://poj.org/problem?id=3233

http://acm.hdu.edu.cn/showproblem.php?pid=2276

http://acm.hdu.edu.cn/showproblem.php?pid=5015

https://ac.nowcoder.com/acm/contest/338/L

(题解:https://paste.ubuntu.com/p/8pMmJc6SDn/

 

矩阵快速幂(Matrix_Fast_Power)的更多相关文章

  1. 矩阵快速幂 HDU 4565 So Easy!(简单?才怪!)

    题目链接 题意: 思路: 直接拿别人的图,自己写太麻烦了~ 然后就可以用矩阵快速幂套模板求递推式啦~ 另外: 这题想不到或者不会矩阵快速幂,根本没法做,还是2013年长沙邀请赛水题,也是2008年Go ...

  2. 51nod 算法马拉松18 B 非010串 矩阵快速幂

    非010串 基准时间限制:1 秒 空间限制:131072 KB 分值: 80 如果一个01字符串满足不存在010这样的子串,那么称它为非010串. 求长度为n的非010串的个数.(对1e9+7取模) ...

  3. 51nod 1113 矩阵快速幂

    题目链接:51nod 1113 矩阵快速幂 模板题,学习下. #include<cstdio> #include<cmath> #include<cstring> ...

  4. 【66测试20161115】【树】【DP_LIS】【SPFA】【同余最短路】【递推】【矩阵快速幂】

    还有3天,今天考试又崩了.状态还没有调整过来... 第一题:小L的二叉树 勤奋又善于思考的小L接触了信息学竞赛,开始的学习十分顺利.但是,小L对数据结构的掌握实在十分渣渣.所以,小L当时卡在了二叉树. ...

  5. HDU5950(矩阵快速幂)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5950 题意:f(n) = f(n-1) + 2*f(n-2) + n^4,f(1) = a , f(2 ...

  6. 51nod 1126 矩阵快速幂 水

    有一个序列是这样定义的:f(1) = 1, f(2) = 1, f(n) = (A * f(n - 1) + B * f(n - 2)) mod 7. 给出A,B和N,求f(n)的值. Input 输 ...

  7. hdu2604(递推,矩阵快速幂)

    题目链接:hdu2604 这题重要的递推公式,找到公式就很easy了(这道题和hdu1757(题解)类似,只是这道题需要自己推公式) 可以直接找规律,推出递推公式,也有另一种找递推公式的方法:(PS: ...

  8. 矩阵乘法&矩阵快速幂&矩阵快速幂解决线性递推式

    矩阵乘法,顾名思义矩阵与矩阵相乘, 两矩阵可相乘的前提:第一个矩阵的行与第二个矩阵的列相等 相乘原则: a b     *     A B   =   a*A+b*C  a*c+b*D c d     ...

  9. hdu4965 Fast Matrix Calculation (矩阵快速幂 结合律

    http://acm.hdu.edu.cn/showproblem.php?pid=4965 2014 Multi-University Training Contest 9 1006 Fast Ma ...

随机推荐

  1. [题解] [HNOI2014] 世界树

    题面 [HNOI2014]世界树 题解 从数据范围很容易看出是个虚树DP(可惜看出来了也还是不会做) 虚树大家应该都会, 不会的话自己去搜吧, 我懒得讲了, 我们在这里只需要考虑如何DP即可 首先我们 ...

  2. String,int,Integer之间的转换

    public class Test{ public static void main(String[] args) { //int转换成Integer Integer in = new Integer ...

  3. fMRI数据分析处理原理及方法————转自网络

    fMRI数据分析处理原理及方法 来源: 整理文件的时候翻到的,来源已经找不到了囧感觉写得还是不错,贴在这里保存. 近年来,血氧水平依赖性磁共振脑功能成像(Blood oxygenation level ...

  4. 用Intellij idea搭建solr调试环境

    最近在使用solr时,配置会有一些问题,log里面打印出日志了,但是还是不知道发生这样错误的原因.于是想学习一下相关的solr源码,以下是如何搭建solr调试环境步骤. solr调试环境搭建,首先下载 ...

  5. js中||与&&的用法

    || 或 &&与常用法 func a()和func b() a() && b() 如果a执行成功返回true则执行b返回b结果的值,如果a执行返回false则不执行b ...

  6. .Net Core Linux部署

    .Net Core是微软最新的开源框架跨平台框架 官网文档 .Net Core相关发布指令,以及发布RId便于查看 RID链接 .Net Core要想发布到Linux有俩种方案,分别是依赖框架的部署( ...

  7. mysql实现id自增

    用下面这句话就可以实现插入mysql数据时候实现id自增 create table shuju (id int(10) auto_increment primary key,name varchar( ...

  8. nginx主配置文件实例

    1.修改配置文件 重要:修改配置文件使用虚拟机,否则怎么配置都不生效,添加如下用户 [root@host-10-1-1-161 html]# ll /etc/nginx/nginx.conf -rw- ...

  9. 第一个python-ui界面

    首先是安装eric6简直是个灾难,先是找不到汉化版的eric6,好不容易找到了,一打开eric6的窗体就说designer.exe不存在,确实在PyQt5里没有,明明在PyQt5-tools里面有,最 ...

  10. 使用NLog的最佳实践

    1. Logger应该在每个类中初始化为静态 创建一个新的Logger类是有有开销的,因为它需要获取一些锁和分配对象和内存. 因此推荐像下面一样使用Logger: namespace MyNamesp ...