FromOut-of-core classification of text documents

Code: 

"""
======================================================
Out-of-core classification of text documents
====================================================== This is an example showing how scikit-learn can be used for classification
using an out-of-core approach: learning from data that doesn't fit into main
memory. We make use of an online classifier, i.e., one that supports the
partial_fit method, that will be fed with batches of examples. To guarantee
that the features space remains the same over time we leverage a
HashingVectorizer that will project each example into the same feature space.
This is especially useful in the case of text classification where new
features (words) may appear in each batch. The dataset used in this example is Reuters-21578 as provided by the UCI ML
repository. It will be automatically downloaded and uncompressed on first run. The plot represents the learning curve of the classifier: the evolution
of classification accuracy over the course of the mini-batches. Accuracy is
measured on the first 1000 samples, held out as a validation set. To limit the memory consumption, we queue examples up to a fixed amount before
feeding them to the learner.
""" # Authors: Eustache Diemert <eustache@diemert.fr>
# @FedericoV <https://github.com/FedericoV/>
# License: BSD 3 clause from __future__ import print_function from glob import glob
import itertools
import os.path
import re
import tarfile
import time import numpy as np
import matplotlib.pyplot as plt
from matplotlib import rcParams from sklearn.externals.six.moves import html_parser
from sklearn.externals.six.moves import urllib
from sklearn.datasets import get_data_home
from sklearn.feature_extraction.text import HashingVectorizer
from sklearn.linear_model import SGDClassifier
from sklearn.linear_model import PassiveAggressiveClassifier
from sklearn.linear_model import Perceptron
from sklearn.naive_bayes import MultinomialNB def _not_in_sphinx():
# Hack to detect whether we are running by the sphinx builder
return '__file__' in globals() ###############################################################################
# Reuters Dataset related routines
# --------------------------------
#

comment

class ReutersParser(html_parser.HTMLParser):
"""Utility class to parse a SGML file and yield documents one at a time.""" def __init__(self, encoding='latin-1'):
html_parser.HTMLParser.__init__(self)
self._reset()
self.encoding = encoding def handle_starttag(self, tag, attrs):
method = 'start_' + tag
getattr(self, method, lambda x: None)(attrs) def handle_endtag(self, tag):
method = 'end_' + tag
getattr(self, method, lambda: None)() def _reset(self):
self.in_title = 0
self.in_body = 0
self.in_topics = 0
self.in_topic_d = 0
self.title = ""
self.body = ""
self.topics = []
self.topic_d = "" def parse(self, fd):
self.docs = []
for chunk in fd:
self.feed(chunk.decode(self.encoding))
for doc in self.docs:
yield doc
self.docs = []
self.close() def handle_data(self, data):
if self.in_body:
self.body += data
elif self.in_title:
self.title += data
elif self.in_topic_d:
self.topic_d += data def start_reuters(self, attributes):
pass def end_reuters(self):
self.body = re.sub(r'\s+', r' ', self.body)
self.docs.append({'title': self.title,
'body': self.body,
'topics': self.topics})
self._reset() def start_title(self, attributes):
self.in_title = 1 def end_title(self):
self.in_title = 0 def start_body(self, attributes):
self.in_body = 1 def end_body(self):
self.in_body = 0 def start_topics(self, attributes):
self.in_topics = 1 def end_topics(self):
self.in_topics = 0 def start_d(self, attributes):
self.in_topic_d = 1 def end_d(self):
self.in_topic_d = 0
self.topics.append(self.topic_d)
self.topic_d = ""

class ReutersParser

def stream_reuters_documents(data_path=None):
"""Iterate over documents of the Reuters dataset. The Reuters archive will automatically be downloaded and uncompressed if
the `data_path` directory does not exist. Documents are represented as dictionaries with 'body' (str),
'title' (str), 'topics' (list(str)) keys. """ DOWNLOAD_URL = ('http://archive.ics.uci.edu/ml/machine-learning-databases/reuters21578-mld/reuters21578.tar.gz')
ARCHIVE_FILENAME = 'reuters21578.tar.gz' if data_path is None:
data_path = os.path.join(get_data_home(), "reuters")
if not os.path.exists(data_path):
"""Download the dataset."""
print("downloading dataset (once and for all) into %s" %
data_path)
os.mkdir(data_path) def progress(blocknum, bs, size):
total_sz_mb = '%.2f MB' % (size / 1e6)
current_sz_mb = '%.2f MB' % ((blocknum * bs) / 1e6)
if _not_in_sphinx():
print('\rdownloaded %s / %s' % (current_sz_mb, total_sz_mb),
end='') archive_path = os.path.join(data_path, ARCHIVE_FILENAME)
urllib.request.urlretrieve(DOWNLOAD_URL, filename=archive_path,
reporthook=progress)
if _not_in_sphinx():
print('\r', end='')
print("untarring Reuters dataset...")
tarfile.open(archive_path, 'r:gz').extractall(data_path)
print("done.") parser = ReutersParser()
for filename in glob(os.path.join(data_path, "*.sgm")):
for doc in parser.parse(open(filename, 'rb')):
yield doc

stream_reuters_documents

###############################################################################
# Main
# ----
#
# Create the vectorizer and limit the number of features to a reasonable
# maximum vectorizer = HashingVectorizer(decode_error='ignore', n_features=2 ** 18, non_negative=True) # Iterator over parsed Reuters SGML files.
data_stream = stream_reuters_documents() # We learn a binary classification between the "acq" class and all the others.
# "acq" was chosen as it is more or less evenly distributed in the Reuters
# files. For other datasets, one should take care of creating a test set with
# a realistic portion of positive instances.
all_classes = np.array([0, 1])
positive_class = 'acq' # Here are some classifiers that support the `partial_fit` method
partial_fit_classifiers
= {
'SGD': SGDClassifier(),
'Perceptron': Perceptron(),
'NB Multinomial': MultinomialNB(alpha=0.01),
'Passive-Aggressive': PassiveAggressiveClassifier(),
} def get_minibatch(doc_iter, size, pos_class=positive_class):
"""Extract a minibatch of examples, return a tuple X_text, y. Note: size is before excluding invalid docs with no topics assigned. """
data = [(u'{title}\n\n{body}'.format(**doc), pos_class in doc['topics'])
for doc in itertools.islice(doc_iter, size)
if doc['topics']]
if not len(data):
return np.asarray([], dtype=int), np.asarray([], dtype=int)
X_text, y = zip(*data)
return X_text, np.asarray(y, dtype=int) def iter_minibatches(doc_iter, minibatch_size):
"""Generator of minibatches."""
X_text, y = get_minibatch(doc_iter, minibatch_size)
while len(X_text):
yield X_text, y
X_text, y = get_minibatch(doc_iter, minibatch_size) # test data statistics
test_stats = {'n_test': 0, 'n_test_pos': 0} # First we hold out a number of examples to estimate accuracy
n_test_documents = 1000
tick = time.time()
X_test_text, y_test = get_minibatch(data_stream, 1000)
parsing_time = time.time() - tick
tick = time.time()
X_test = vectorizer.transform(X_test_text)
vectorizing_time = time.time() - tick
test_stats['n_test'] += len(y_test)
test_stats['n_test_pos'] += sum(y_test)
print("Test set is %d documents (%d positive)" % (len(y_test), sum(y_test)))

def progress(cls_name, stats):
"""Report progress information, return a string."""
duration = time.time() - stats['t0']
s = "%20s classifier : \t" % cls_name
s += "%(n_train)6d train docs (%(n_train_pos)6d positive) " % stats
s += "%(n_test)6d test docs (%(n_test_pos)6d positive) " % test_stats
s += "accuracy: %(accuracy).3f " % stats
s += "in %.2fs (%5d docs/s)" % (duration, stats['n_train'] / duration)
return s cls_stats = {} for cls_name in partial_fit_classifiers:
stats = {'n_train': 0,
'n_train_pos': 0,
'accuracy': 0.0,
'accuracy_history': [(0, 0)],
't0': time.time(),
'runtime_history': [(0, 0)],
'total_fit_time': 0.0 }
cls_stats[cls_name] = stats get_minibatch(data_stream, n_test_documents)
# Discard test set # We will feed the classifier with mini-batches of 1000 documents; this means
# we have at most 1000 docs in memory at any time. The smaller the document
# batch, the bigger the relative overhead of the partial fit methods.
minibatch_size = 1000 # Create the data_stream that parses Reuters SGML files and iterates on
# documents as a stream.
minibatch_iterators = iter_minibatches(data_stream, minibatch_size)
total_vect_time = 0.0 # Main loop : iterate on mini-batches of examples
# 来一批,大家各自训练一次;再来一批,大家各自再训练一次

for i, (X_train_text, y_train) in enumerate(minibatch_iterators): tick = time.time()
X_train = vectorizer.transform(X_train_text)
total_vect_time += time.time() - tick for cls_name, cls in partial_fit_classifiers.items():
tick = time.time()
# update estimator with examples in the current mini-batch
cls.partial_fit(X_train, y_train, classes=all_classes) # accumulate test accuracy stats
cls_stats[cls_name]['total_fit_time'] += time.time() - tick
cls_stats[cls_name]['n_train'] += X_train.shape[0]
cls_stats[cls_name]['n_train_pos'] += sum(y_train)
tick = time.time()
cls_stats[cls_name]['accuracy'] = cls.score(X_test, y_test)
cls_stats[cls_name]['prediction_time'] = time.time() - tick
acc_history = (cls_stats[cls_name]['accuracy'], cls_stats[cls_name]['n_train'])
cls_stats[cls_name]['accuracy_history'].append(acc_history)
run_history = (cls_stats[cls_name]['accuracy'], total_vect_time + cls_stats[cls_name]['total_fit_time'])
cls_stats[cls_name]['runtime_history'].append(run_history) if i % 3 == 0:
print(progress(cls_name, cls_stats[cls_name]))
if i % 3 == 0:
print('\n') ###############################################################################
# Plot results
# ------------ def plot_accuracy(x, y, x_legend):
"""Plot accuracy as a function of x."""
x = np.array(x)
y = np.array(y)
plt.title('Classification accuracy as a function of %s' % x_legend)
plt.xlabel('%s' % x_legend)
plt.ylabel('Accuracy')
plt.grid(True)
plt.plot(x, y) rcParams['legend.fontsize'] = 10
cls_names = list(sorted(cls_stats.keys()))

# Plot accuracy evolution
plt.figure()
for _, stats in sorted(cls_stats.items()):
# Plot accuracy evolution with #examples
accuracy, n_examples = zip(*stats['accuracy_history'])
plot_accuracy(n_examples, accuracy, "training examples (#)")
ax = plt.gca()
ax.set_ylim((0.8, 1))
plt.legend(cls_names, loc='best') plt.figure()
for _, stats in sorted(cls_stats.items()):
# Plot accuracy evolution with runtime
accuracy, runtime = zip(*stats['runtime_history'])
plot_accuracy(runtime, accuracy, 'runtime (s)')
ax = plt.gca()
ax.set_ylim((0.8, 1))
plt.legend(cls_names, loc='best') # Plot fitting times
plt.figure()
fig = plt.gcf()
cls_runtime = []
for cls_name, stats in sorted(cls_stats.items()):
cls_runtime.append(stats['total_fit_time']) cls_runtime.append(total_vect_time)
cls_names.append('Vectorization')
bar_colors = ['b', 'g', 'r', 'c', 'm', 'y'] ax = plt.subplot(111)
rectangles = plt.bar(range(len(cls_names)), cls_runtime, width=0.5,
color=bar_colors) ax.set_xticks(np.linspace(0.25, len(cls_names) - 0.75, len(cls_names)))
ax.set_xticklabels(cls_names, fontsize=10)
ymax = max(cls_runtime) * 1.2
ax.set_ylim((0, ymax))
ax.set_ylabel('runtime (s)')
ax.set_title('Training Times') def autolabel(rectangles):
"""attach some text vi autolabel on rectangles."""
for rect in rectangles:
height = rect.get_height()
ax.text(rect.get_x() + rect.get_width() / 2.,
1.05 * height, '%.4f' % height,
ha='center', va='bottom') autolabel(rectangles)
plt.show() # Plot prediction times
plt.figure()
cls_runtime = []
cls_names = list(sorted(cls_stats.keys()))
for cls_name, stats in sorted(cls_stats.items()):
cls_runtime.append(stats['prediction_time'])
cls_runtime.append(parsing_time)
cls_names.append('Read/Parse\n+Feat.Extr.')
cls_runtime.append(vectorizing_time)
cls_names.append('Hashing\n+Vect.') ax = plt.subplot(111)
rectangles = plt.bar(range(len(cls_names)), cls_runtime, width=0.5,
color=bar_colors) ax.set_xticks(np.linspace(0.25, len(cls_names) - 0.75, len(cls_names)))
ax.set_xticklabels(cls_names, fontsize=8)
plt.setp(plt.xticks()[1], rotation=30)
ymax = max(cls_runtime) * 1.2
ax.set_ylim((0, ymax))
ax.set_ylabel('runtime (s)')
ax.set_title('Prediction Times (%d instances)' % n_test_documents)
autolabel(rectangles)
plt.show()

[Scikit-learn] Yield miniBatch for online learning.的更多相关文章

  1. (原创)(三)机器学习笔记之Scikit Learn的线性回归模型初探

    一.Scikit Learn中使用estimator三部曲 1. 构造estimator 2. 训练模型:fit 3. 利用模型进行预测:predict 二.模型评价 模型训练好后,度量模型拟合效果的 ...

  2. (原创)(四)机器学习笔记之Scikit Learn的Logistic回归初探

    目录 5.3 使用LogisticRegressionCV进行正则化的 Logistic Regression 参数调优 一.Scikit Learn中有关logistics回归函数的介绍 1. 交叉 ...

  3. Scikit Learn: 在python中机器学习

    转自:http://my.oschina.net/u/175377/blog/84420#OSC_h2_23 Scikit Learn: 在python中机器学习 Warning 警告:有些没能理解的 ...

  4. scikit learn 模块 调参 pipeline+girdsearch 数据举例:文档分类 (python代码)

    scikit learn 模块 调参 pipeline+girdsearch 数据举例:文档分类数据集 fetch_20newsgroups #-*- coding: UTF-8 -*- import ...

  5. Scikit Learn

    Scikit Learn Scikit-Learn简称sklearn,基于 Python 语言的,简单高效的数据挖掘和数据分析工具,建立在 NumPy,SciPy 和 matplotlib 上.

  6. 集成算法(chapter 7 - Hands on machine learning with scikit learn and tensorflow)

    Voting classifier 多种分类器分别训练,然后分别对输入(新数据)预测/分类,各个分类器的结果视为投票,投出最终结果: 训练: 投票: 为什么三个臭皮匠顶一个诸葛亮.通过大数定律直观地解 ...

  7. Linear Regression with Scikit Learn

    Before you read  This is a demo or practice about how to use Simple-Linear-Regression in scikit-lear ...

  8. 机器学习-scikit learn学习笔记

    scikit-learn官网:http://scikit-learn.org/stable/ 通常情况下,一个学习问题会包含一组学习样本数据,计算机通过对样本数据的学习,尝试对未知数据进行预测. 学习 ...

  9. 【359】scikit learn 官方帮助文档

    官方网站链接 sklearn.neighbors.KNeighborsClassifier sklearn.tree.DecisionTreeClassifier sklearn.naive_baye ...

随机推荐

  1. Go语言——值方法 & 指针方法

    1 package main import ( "fmt" "sort" ) type SortableStrings []string type Sortab ...

  2. 2018/7/31-zznu-oj-问题 F: 手机密码--【裸dfs+for循环即可!——据说三个小时内只有两个人读完了题意并轻松AC了】

    问题 F: 手机密码 时间限制: 1 Sec  内存限制: 128 MB提交: 41  解决: 23[提交] [状态] [讨论版] [命题人:admin] 题目描述 手机安全问题是大家经常关心的一个问 ...

  3. 云计算下的企业IT运维

    云计算管理员们一般都工作在一个分布式局域网计算基础设施中,它与传统数据中心最大的区别之一就是,所有被存储.调配和管理的数据都在一个私有云中.基于云计算的高效工作负载监控可在性能发生问题之前就提前发现这 ...

  4. Springboot项目启动报org.springframework.beans.factory.UnsatisfiedDependencyException

    org.springframework.beans.factory.UnsatisfiedDependencyException: Error creating bean with name 'hom ...

  5. hbase实践之写流程拾遗

    keyvalue KeyValue中包含了丰富的自我描述信息: KeyValue是支撑"稀疏矩阵"设计的一个关键点:一些Key相同的任意数量的独立KeyValue就可以构成一行数据 ...

  6. 小程序setData数据量过大时候会对渲染有影响吗?

    datas:[ { id:1000, name: "帅哥", title: '...', b: '...', d: 0, f:0, .... }, { id:1001, name: ...

  7. C#百度api 根据经纬度获取地址

    public string GetAddress(string lat, string lng) { try { string res = ""; string url = @&q ...

  8. BZOJ 3218 A + B Problem (可持久化线段树+最小割)

    做法见dalao博客 geng4512的博客, 思路就是用线段树上的结点来进行区间连边.因为有一个只能往前面连的限制,所以还要可持久化.(duliu) 一直以来我都是写dinicdinicdinic做 ...

  9. vue开发记录

    vue开发过程中遇到的一些小问题.小技巧等,会不断更新~ 记录不详细处,欢迎留言

  10. Oracle 体系结构图

    Oracle体系结构图 详细图