【洛谷5439】【XR-2】永恒(树链剖分,线段树)

题面

洛谷

题解

首先两个点的\(LCP\)就是\(Trie\)树上的\(LCA\)的深度。

考虑一对点的贡献,如果这两个点不具有祖先关系,那么这对点被计算的次数是\(size[u]*size[v]\)次。否则具有祖先关系,假设\(u\)是\(v\)祖先,则是\(size[v]*(n-size[u]+1)\)次。

于是先考虑所有点不具有祖先关系,再减去有祖先关系的情况就好了。

然后现在知道了统计的次数,还需要知道统计的值,显然这个\(len\)可以从\(LCA\)到根节点在每个点都统计一次,那么就是每次链加链求和就行了。

怎么算就看代码吧。。。

#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<cmath>
#include<algorithm>
#include<vector>
using namespace std;
#define ll long long
#define MAX 300300
#define MOD 998244353
inline int read()
{
int x=0;bool t=false;char ch=getchar();
while((ch<'0'||ch>'9')&&ch!='-')ch=getchar();
if(ch=='-')t=true,ch=getchar();
while(ch<='9'&&ch>='0')x=x*10+ch-48,ch=getchar();
return t?-x:x;
}
int n,m,rt,ans,a[MAX];
vector<int> E[MAX],TE[MAX];
int dep[MAX],fa[MAX],sz[MAX],hson[MAX],top[MAX],dfn[MAX],tim;
void dfs1(int u,int ff)
{
fa[u]=ff;dep[u]=dep[ff]+1;sz[u]=1;
for(int v:TE[u])
{
dfs1(v,u),sz[u]+=sz[v];
if(sz[v]>sz[hson[u]])hson[u]=v;
}
}
void dfs2(int u,int tp)
{
top[u]=tp;dfn[u]=++tim;
if(hson[u])dfs2(hson[u],tp);
for(int v:TE[u])if(v!=hson[u])dfs2(v,v);
}
#define lson (now<<1)
#define rson (now<<1|1)
int sum[MAX<<2],tag[MAX<<2];
void Modify(int now,int l,int r,int L,int R,int w)
{
if(L<=l&&r<=R)
{
sum[now]=(sum[now]+1ll*(r-l+1)*w)%MOD;
tag[now]=(tag[now]+w)%MOD;
return;
}
int mid=(l+r)>>1;
if(L<=mid)Modify(lson,l,mid,L,R,w);
if(R>mid)Modify(rson,mid+1,r,L,R,w);
sum[now]=(sum[lson]+sum[rson]+1ll*tag[now]*(r-l+1))%MOD;
}
int Query(int now,int l,int r,int L,int R)
{
if(L==l&&r==R)return sum[now];
int mid=(l+r)>>1,ret=1ll*tag[now]*(R-L+1)%MOD;
if(R<=mid)return (ret+Query(lson,l,mid,L,R))%MOD;
if(L>mid)return (ret+Query(rson,mid+1,r,L,R))%MOD;
return (0ll+ret+Query(lson,l,mid,L,mid)+Query(rson,mid+1,r,mid+1,R))%MOD;
}
void Modify(int u,int w){while(u)Modify(1,1,m,dfn[top[u]],dfn[u],w),u=fa[top[u]];}
int Query(int u){int s=0;while(u)s=(s+Query(1,1,m,dfn[top[u]],dfn[u]))%MOD,u=fa[top[u]];return s;}
void dfs(int u){sz[u]=1;for(int v:E[u])dfs(v),sz[u]+=sz[v];}
void DFS(int u)
{
ans=(ans+1ll*sz[u]*Query(a[u])%MOD)%MOD;
Modify(a[u],MOD-sz[u]);
for(int v:E[u])
{
Modify(a[u],n-sz[v]);
DFS(v);
Modify(a[u],MOD-(n-sz[v]));
}
Modify(a[u],sz[u]);
}
int main()
{
n=read();m=read();
for(int i=1;i<=n;++i)E[read()].push_back(i);
for(int i=1;i<=m;++i)TE[read()].push_back(i);
scanf("%*s");
for(int i=1;i<=n;++i)a[i]=read();
for(int v:TE[1])dfs1(v,0),dfs2(v,v);
dfs(E[0][0]);
for(int i=1;i<=n;++i)ans=(ans+1ll*sz[i]*Query(a[i]))%MOD,Modify(a[i],sz[i]);
for(int i=1;i<=n;++i)Modify(a[i],MOD-sz[i]);
DFS(E[0][0]);
printf("%d\n",ans);
return 0;
}

【洛谷5439】【XR-2】永恒(树链剖分,线段树)的更多相关文章

  1. 洛谷P4092 [HEOI2016/TJOI2016]树 并查集/树链剖分+线段树

    正解:并查集/树链剖分+线段树 解题报告: 传送门 感觉并查集的那个方法挺妙的,,,刚好又要复习下树剖了,所以就写个题解好了QwQ 首先说下并查集的方法趴QwQ 首先离线,读入所有操作,然后dfs遍历 ...

  2. 洛谷P3313 [SDOI2014]旅行 题解 树链剖分+线段树动态开点

    题目链接:https://www.luogu.org/problem/P3313 这道题目就是树链剖分+线段树动态开点. 然后做这道题目之前我们先来看一道不考虑树链剖分之后完全相同的线段树动态开点的题 ...

  3. 【BZOJ-2325】道馆之战 树链剖分 + 线段树

    2325: [ZJOI2011]道馆之战 Time Limit: 40 Sec  Memory Limit: 256 MBSubmit: 1153  Solved: 421[Submit][Statu ...

  4. 【BZOJ2243】[SDOI2011]染色 树链剖分+线段树

    [BZOJ2243][SDOI2011]染色 Description 给定一棵有n个节点的无根树和m个操作,操作有2类: 1.将节点a到节点b路径上所有点都染成颜色c: 2.询问节点a到节点b路径上的 ...

  5. BZOJ2243 (树链剖分+线段树)

    Problem 染色(BZOJ2243) 题目大意 给定一颗树,每个节点上有一种颜色. 要求支持两种操作: 操作1:将a->b上所有点染成一种颜色. 操作2:询问a->b上的颜色段数量. ...

  6. POJ3237 (树链剖分+线段树)

    Problem Tree (POJ3237) 题目大意 给定一颗树,有边权. 要求支持三种操作: 操作一:更改某条边的权值. 操作二:将某条路径上的边权取反. 操作三:询问某条路径上的最大权值. 解题 ...

  7. bzoj4034 (树链剖分+线段树)

    Problem T2 (bzoj4034 HAOI2015) 题目大意 给定一颗树,1为根节点,要求支持三种操作. 操作 1 :把某个节点 x 的点权增加 a . 操作 2 :把某个节点 x 为根的子 ...

  8. HDU4897 (树链剖分+线段树)

    Problem Little Devil I (HDU4897) 题目大意 给定一棵树,每条边的颜色为黑或白,起始时均为白. 支持3种操作: 操作1:将a->b的路径中的所有边的颜色翻转. 操作 ...

  9. Aizu 2450 Do use segment tree 树链剖分+线段树

    Do use segment tree Time Limit: 1 Sec Memory Limit: 256 MB 题目连接 http://www.bnuoj.com/v3/problem_show ...

  10. 【POJ3237】Tree(树链剖分+线段树)

    Description You are given a tree with N nodes. The tree’s nodes are numbered 1 through N and its edg ...

随机推荐

  1. Zipkin客户端链路追踪源码解析

    我们知道,Zipkin这个工具可以帮助我们收集分布式系统中各个系统之间的调用连关系,而且除了Servlet之外还能收集:MQ.线程池.WebSocket.Feign.Hystrix.RxJava.We ...

  2. JS基础语法---分支语句总结

    分支语句: if语句:一个分支 if-else语句:两个分支,最终只执行一个分支 if-else if-else if...语句: 多个分支,也是只会执行一个 switch-case语句:多分支语句, ...

  3. JavaScript初探 二 (了解数据)

    JavaScript初探 (二) JavaScript 事件 HTML事件 HTML事件是可以在浏览器或用户做的某些事情 HTML事件的例子: HTML网页完成加载 HTML输入字段被修改 HTML按 ...

  4. git终端提交代码

  5. Android自定义注解

    1.元注解   概念:用来定义其他注解的注解,自定义注解的时候,需要使用它来定义我们的注解.   在jdk 1.5之后提供了 java.lang.annotation 来支持注解功能   常见的四种元 ...

  6. Fundebug录屏插件更新至0.6.0

    摘要: 录屏插件的性能进一步优化,传输的数据体积大幅度减少. 录屏功能介绍 Fundebug提供专业的异常监控服务,当线上应用出现 BUG 的时候,我们可以第一时间报警,帮助开发者及时发现 BUG,提 ...

  7. PWA入门:手把手教你制作一个PWA应用

    摘要: PWA图文教程 原文:PWA入门:手把手教你制作一个PWA应用 作者:MudOnTire Fundebug经授权转载,版权归原作者所有. 简介 Web前端的同学是否想过学习app开发,以弥补自 ...

  8. Centos7下安装配置keepalived

    这里用的是两台设备做高可用 master服务器ip地址:192.168.12.78 slave服务器ip地址:192.168.12.79 虚拟ip(VIP,一个尚未占用的内网ip即可)地址:192.1 ...

  9. RAID10(5块硬盘)的简介和创建

    一.        RAID10简介 (1)兼具速度和安全性,但成本很高. (2)继承了RAID0的快速与RAID1的安全,RAID1在这里提供了冗余备份的阵列,而RAID0则负责数据的读写阵列.因这 ...

  10. 第一周-调用weka算法进行数据挖掘

    第一周-调用weka算法进行数据挖掘 简单数据集data.txt @relation weather @attribute outlook {sunny, overcast, rainy} @attr ...